ВОЗБУЖДЕНИЕ ДЕТОНАЦИИ В СНАРЯЖЕНИИ ОБОЛОЧЕЧНЫХ ВЗРЫВНЫХ УСТРОЙСТВ ПРИ ВОЗДЕЙСТВИИ ВЫСОКОСКОРОСТНЫХ УДАРНИКОВ С РАЗНОЙ ФОРМОЙ ГОЛОВНОЙ ЧАСТИ

И.Ф. Кобылкин И.А. Павлова

kobylkin_ivan@mail.ru i.a.yakovenko@yandex.ru

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация	Ключевые слова		
Приведены результаты численного моделирования	Заряд взрывчатого вещества		
процесса возбуждения детонации в зарядах взрывчатых	в оболочке, возбуждение детона-		
веществ, ограниченных стальной оболочкой толщиной	ции, ударная волна, численное		
5 мм, при воздействии компактных ударников с кониче-	моделирование, кинетика разло-		
ской и сферической формами головной части и с плос-	жения		
ким торцом. Определены критические скорости иници-			
ирования детонации в зарядах взрывчатых веществ с			
американским составом В и тринитротолуолом при	Поступила в редакцию 28.03.2017		
воздействии ударников диаметром 1016 мм	© МГТУ им. Н.Э. Баумана, 2017		

Введение. Необходимость исследования процесса возбуждения детонации в снаряжении оболочечных взрывных устройств (ВУ) при воздействии высокоскоростных ударников обусловлена следующими практическими задачами: 1) изучение уязвимости ВУ к прострелу; 2) обеспечение надежности функционирования ВУ; 3) разработка методов дистанционного разминирования (уничтожения) ВУ путем их обстрела высокоскоростными ударниками.

Настоящая статья посвящена решению последней задачи. С помощью численного моделирования исследуется процесс возбуждения детонации в зарядах взрывчатых веществ (ВВ), заключенных в стальные оболочки, при высокоскоростном воздействии компактных цилиндрических ударников (КУ) с различной формой головной части. Цель — определение критической скорости КУ, при превышении которой в зарядах ВВ возбуждается детонация.

Необходимо отметить, что установлению механизмов и критериев возбуждения взрывных превращений в оболочечных ВУ при воздействии высокоскоростных КУ посвящена обширная литература, обзор которой дан в книге [1]. Там же приведен обобщенный энергетический критерий возбуждения детонации при интенсивном локализованном воздействии КУ, разработанный И.Ф. Кобылкиным. Этот критерий при воздействии КУ по нормали к поверхности ВУ имеет следующий вид:

$$G \ge G_{\rm Kp} \left(1 + m \frac{\delta_1}{d}\right)^2 \left(1 + \kappa\right)^2 \left(\frac{Z_{\rm o6} + Z_{\rm Ky}}{Z_{\rm Ky}}\right)^2 \left(\frac{Z_{\rm o6} + Z_{\rm BB}}{2Z_{\rm o6}}\right)^2,\tag{1}$$

где $G = v^2 d$ — энергетический параметр, определяющий инициирующую способность КУ диаметром d и движущегося со скоростью v; $G_{\rm kp}$ — критическое значение энергетического параметра, необходимое для инициирования детонации в открытом заряде BB; m — коэффициент, учитывающий экранирование заряда BB оболочкой; δ_1 — толщина передней стенки оболочки; κ — коэффициент, учитывающий влияние формы головной части ударника; Z_{o6} , $Z_{\rm Ky}$, $Z_{\rm BB}$ – импедансы материалов оболочки, КУ и BB соответственно. Из энергетического критерия (1) следует известная эмпирическая формула Джакобса — Русланда для критической скорости ударника $v_{\rm kp}$ [2].

Энергетический критерий (1) качественно правильно отражает известные экспериментальные данные при воздействии высокоскоростных КУ с плоскими торцами на открытые заряды BB, когда $\delta_1 = 0$, $\kappa = 0$. При воздействии ударников с полусферической головной частью в [2] рекомендуют принимать $\kappa = 1$. Если воздействие осуществляется на экранированные заряды BB, то значение коэффициента *m* обычно принимается равным отношению плотностей материалов экранирующей оболочки и КУ. Такие значения коэффициентов κ и *m* не позволяют достичь удовлетворительного согласия с экспериментальными и расчетными значениями критических скоростей инициирования детонации, что препятствует использованию энергетического критерия (1) в инженерной практике при предварительном проектировочном анализе инициирующей способности КУ. Поэтому одна из задач численного моделирования состояла в расчете значений $v_{\kappa p}$ при различных конструкциях КУ и условиях их взаимодействия с оболочечными BУ для последующего подбора подходящих значений коэффициентов κ и *m*.

Постановка задачи. Для исследования выбрана обобщенная модель оболочечного ВУ, приведенная на рис. 1. Толщина стенок оболочки принималась

равной 5 мм, материал оболочки — среднеуглеродистая сталь. В качестве снаряжения использовались два наиболее распространенных литьевых взрывчатых состава: ТГ 40/60 — сплав ТНТ (40 %) и гексогена (60 %); ТНТ — тринитротолуол. Сплав ТГ 40/60 по рецептуре совпадает с американским составом В [3], поэтому далее между этими взрывчатыми составами не делается различия и обозначаются они как сост. В.

Расчетная модель содержит четыре основных элемента: цилиндрический КУ, ВВ, оболочку и окружающий воздух. Материал ударника — среднеуглеродистая сталь. Изучалось высокоскорост-

Рис. 1. Постановка задачи

ное ударное воздействие на ВУ КУ диаметром 10, 12, 14 и 16 мм со следующими формами головной части: плоским торцом, сферической и конической (рис. 2).

Численное моделирование было выполнено в программе LS-DYNA методом ALE-2D. Материал ударника — сталь 30 с уравнениями состояния (УРС) Ми — Грюнайзена и Джонсона — Кука [4]. Эти УРС интегрированы в комплекс программ ANSYS.

Рис. 2. Конструкция ударников

УРС в форме JWL [5]:

В качестве уравнения состояния как для BB, так и для продуктов детонации использовалось

$$p(\upsilon, e) = A\left(1 - \frac{\Gamma}{R_1 \frac{\upsilon}{\upsilon_0}}\right) \exp\left(-R_1 \frac{\upsilon}{\upsilon_0}\right) + B\left(1 - \frac{\Gamma}{R_2 \frac{\upsilon}{\upsilon_0}}\right) \exp\left(-R_2 \frac{\upsilon}{\upsilon_0}\right) + \frac{\Gamma e}{\upsilon},$$

где *p*, v, *e*, v₀ — давление, удельный объем, полная энергия и начальный удельный объем в расчетной ячейке соответственно; Г — коэффициент Грюнайзена; *A*, *B*, *R*₁, *R*₂ — коэффициенты, приведенные в табл. 1, взяты из работы [3].

Таблица 1

Коэффициенты уравнения JWL для сост. В и ТНТ

Заряд взрывчатого	Коэффициенты					
вещества	А, ГПа	В, ГПа	R_1	R_2	Г	
Сост. В	77 810	-5,031	11,3	1,13	0,8938	
Продукты детонации сост. В	524,2	7,68	4,2	1,1	0,5	
ТНТ	1798	-93,1	6,2	3,1	0,8926	
Продукты детонации ТНТ	371,2	3,231	4,15	0,95	0,3	

Для описания кинетики разложения ВВ в ударных волнах использовалась модель Ли — Тарвера, в соответствии с которой скорость разложения ВВ описывается уравнением

$$\frac{d\lambda}{dt} = \begin{cases} I (1-\lambda)^b \left(\frac{\rho}{\rho_0} - 1 - a\right)^x, & \text{если} \quad \frac{\rho}{\rho_0} > a+1 \text{ и } \lambda < \lambda_{ig \max}; \\ G_1 (1-\lambda)^c \lambda^d p^y, & \text{если} \quad \lambda < \lambda_{G1\max}; \\ G_2 (1-\lambda)^e \lambda^g p^z, & \text{если} \quad \lambda > \lambda_{G2\min}, \end{cases}$$

где λ — массовая доля BB; ρ , ρ_0 — текущая и начальная плотности расчетной ячейки; *I*, *b*, *a*, *x*, $\lambda_{ig \max}$, *G*₁, *c*, *d*, *y*, $\lambda_{G1\max}$, *G*₂, *e*, *g*, *z*, $\lambda_{G2\min}$ — коэффициенты кинетической модели, приведенные в табл. 2 для сост. В и ТНТ [6–8]; *р* — давление в расчетной ячейке.

Таблица 2

Параметр	Значения коэффициентов модели		
1107011017	для сост. В	для ТНТ	
I, 1 / мкс	$4 \cdot 10^{6}$	8·10 ⁸	
b	0,667	0,667	
а	0,0367	0,065	
x	7,0	6,0	
λ_{igmax}	0,022	0,015	
G_1 , Мбар ^{-y} · мкс ⁻¹	140	11,2	
С	0,222	0,667	
d	0,333	0,667	
у	2,0	1,0	
λ_{Glmax}	0,7	1,0	
G_2 , Мбар ^{$-z$} · мкс ^{-1}	1000	820	
е	0,222	0,333	
g	1,0	0,333	
z	3,0	3,0	
$\lambda_{G2\min}$	0,0	0,0	

Коэффициенты кинетики Ли — Тарвера для сост. В и ТНТ

Для определения критической скорости инициирования детонации в процессе численного моделирования для каждой конструкции ударника его скорость в переходной области изменялась с шагом 100 м/с. Моделировалось воздействие ударника по нормали к поверхности ВУ.

Результаты расчетов. Выявлены две конфигурации ударно-волнового инициирования ВВ: инициирование детонации в первой ударной волне, образующейся в заряде ВВ при высокоскоростном воздействии КУ, и инициирование детонации в отраженных УВ или при взаимодействии двух и более отраженных от стенок оболочки ударных волн. На рис. 3 приведены распределения давления в разные моменты времени для указанных конфигураций инициирования.

Известно, что если первая ударная волна не инициирует детонацию, то она уменьшает чувствительность заряда ВВ к последующему ударно-волновому нагружению. В этом заключается явление ударно-волновой десенсибилизации зарядов ВВ [1]. Поскольку кинетика Ли — Тарвера не учитывает явление десенсибилизации ВВ, то в настоящей работе рассматривались только случаи инициирования в первой ударной волне.

За критическую скорость ударника принималось среднее значение между максимальной скоростью, при которой детонация в первой ударной волне не инициируется, и минимальной, при которой детонация инициируется.

Определенные в результате расчетов критические скорости КУ ($v_{\kappa p}$) приведены в табл. 3.

Таблица 3

Заряд взрывчатого вещества	Компактный цилиндрический ударник				
	Диаметр <i>d</i> , мм				Φοργο τοτοργιού μοστι
	10	12	14	16	
	1400	1300	1200	1100	плоский торец
Сост. В	2300	2200	1900	1700	полусфера
	2200	2100	2000	1800	конус (90°)
THT	1750	1600	1500	1400	плоский торец
	2400	2300	2000	1800	полусфера
	2300	2250	-	-	конус (90°)

Значения критических скоростей (м/с) КУ для сост. В и ТНТ

Проблемой численного моделирования является верификация численной модели — согласие получаемых расчетных результатов с известными экспериментальными данными. В нашем случае такими экспериментальными данными являются критические скорости возбуждения детонации в открытых зарядах ТНТ и сост. В ударниками с плоскими торцами [2]. Полученные в результате численного моделирования значения критических скоростей для ударников с плоскими торцами из [2]. Максимальное различие расчетных и экспериментальными значения $v_{\rm kp}$ не превышает 8 %. Данное обстоятельство позволяет использовать разработанную методику численного моделирования для расчета критических скоростей инициирования детонации экранированных зарядов ВВ ударниками с другими формами головных частей.

В результате численных расчетов определено, что ударники со сферической головной частью имеют меньшую инициирующую способность, чем ударники с плоским торцом (см. табл. 3), что соответствует известным экспериментальным данным [2]. Расчет $v_{\rm kp}$ для КУ с полусферической головной частью с помощью энергетического критерия с рекомендованным значением коэффициента формы головной части $\kappa=1$ дает двукратное увеличение $v_{\rm kp}$ по сравнению с $v_{\rm kp}$ для ударников с плоским торцом, что не согласуется с результатами численного моделирования. Удовлетворительное согласие достигается при $\kappa = 0, 45...0, 5$ (рис. 4). Такое значение коэффициента формы головной частью. Важность этого вывода состоит в том, что при практической головной частью. Важность этого вывода состоит в том, что при практической реализации методов дистанционного разминирования (уничтожения) ВУ путем их обстрела высокоскоростными ударниками целесообразно использовать ударники именно с полусферической головной частью, поскольку для них в меньшей степени выражена зависимость $v_{\rm kp}$ от угла воздействия КУ на ВУ.

Ударники с конической головной частью имеют лучшую проникающую способность по сравнению с ударниками с полусферической головной частью.

Рис. 4. Сопоставление результатов расчетов по энергетическому критерию (1 - KY c) плоским торцом; 2 - KY со сферической головной частью, $\kappa = 0,5$; 3 - KY со сферической головной частью, $\kappa = 1$) и численного моделирования (\blacktriangle , \bullet — детонация; \triangle , \bigcirc — отсутствие реакции):

а — для заряда сост. В; *б* — для заряда ТНТ

При пробитии оболочки ВУ они будут терять меньше скорости и, следовательно, достигать заряд ВВ с большей скоростью. Поэтому представляет практический интерес исследование инициирующей способности КУ с конической головной частью при воздействии на оболочечные ВУ.

Как показали расчеты, КУ с конической головной частью с углом при вершине менее 90° обладают меньшей инициирующей способностью по сравнению с КУ с полусферической головной частью. Возбуждение детонации при их воздействии происходит в основном при скоростях больше 2000 м/с. Для выяснения причин пониженной инициирующей способности КУ с острой конической головной частью выполнено численное моделирование ударно-волнового возбуждения детонации в заряде из сост. В при воздействии ударников с коническом торцом, углами при вершине 45 и 90° и скоростями 2200 и 2000 м/с. Рассмотрены случаи взаимодействия ударников с зарядами ВВ без оболочки и в стальной оболочке толщиной 5 мм.

Распределение давления в заряде из сост. В в различные моменты времени при воздействии КУ с конической головной частью с углом при вершине 45° при $v_{\rm Ky} = 2200$ м/с приведено на рис. 5. Анализ начальной стадии нагружения заряда ВВ показывает, что при воздействии конического ударника на ВУ заряд ВВ первоначально нагружается волной сжатия, во фронте которой в отличие от ударно-волнового сжатия давление возрастает постепенно, что препятствует быстрому ударно-волновому инициированию детонации. Как следует из рис. 5, детонация в заряде ВВ не возникает.

Оценить давление *p*_{BB}, возникающее в заряде ВВ при проникании КУ с конической головной частью, можно, полагая процесс проникания установившимся. Тогда

a — заряд BB в стальной оболочке толщиной 5 мм; *b* — заряд BB без оболочки

$$\alpha = 45^{\circ}$$
, $v_{\rm Ky} = 2200 \text{ m/c}$:

Рис. 5. Распределение давления в заряде ВВ (сост. В) в разные моменты времени при воздействии КУ с конической головной частью

$$p_{\rm BB} = \rho v^2 \sin^2 \frac{\alpha}{2},$$

где ρ — плотность заряда BB; α — угол раствора конуса. В соответствии с этой формулой давление нагружения заряда BB тем выше, чем больше угол при вершине конуса. Поэтому ударник с большим углом при вершине имеет большую инициирующую способность. На рис. 6 показано распределение давления в заряде BB (сост. В) в разные моменты времени при воздействии KУ с конической головной частью (α = 90°) с меньшей скоростью v_{KY} = 2000 м/с. При этом возбуждение детонации в заряде с оболочкой происходит со значительной задержкой (~19 мкс) на достаточно большой глубине.

Выводы. 1. С использованием программы LS-Dyna paзpaботана и верифицирована методика численного моделирования процесса возбуждения детонации в оболочечных ВУ при воздействии высокоскоростных КУ с разными формами головных частей.

2. Определены критические скорости инициирования детонации стальными КУ диаметром 10...16 мм с плоскими и полусферическими головными частями в зарядах ВВ из сост. В и ТНТ, ограниченных стальными оболочками толщиной 5 мм. Подобраны коэффициенты формы для энергетического критерия инициирования детонации.

3. Пониженная инициирующая способность ударников с острыми коническими головными частями (угол раствора конуса меньше 90°) объясняется тем, что нагружение заряда ВВ при их воздействии осуществляется волнами сжатия с плавным нарастанием давления во фронте волны.

ЛИТЕРАТУРА

1. *Кобылкин И.Ф.*, *Селиванов В.В.* Возбуждение и распространение взрывных превращений в зарядах взрывчатых веществ. М.: Изд-во МГТУ им. Н.Э. Баумана, 2015. 354 с.

2. *Bahl K.L., Vantine H.C., Weingart R.C.* The shock initiation of bare and covered explosive by projectile impact // The 7th Symp. (Intern.) on Detonation. Annapolis (Maryland, USA), 1981. P. 858–863.

3. *Dobratz B.M., Crawford P.C.* Properties of chemical explosives and explosive simulants. LLNL, University of California, Livermore, 1985.

4. *AutodynTM*. Interactive non-linear analysis software. Theory manual. Century Dynamics Inc., 1998. 244 p.

5. Орленко Л.П., ред. Физика взрыва. В 2 т. Т. 1. М.: Физматлит, 2004. 832 с.

6. Орленко Л.П., ред. Физика взрыва. В 2 т. Т. 2. М.: Физматлит, 2004. 656 с.

7. *Lee E.L., Tarver C.M.* Phenomenological model of shock initiation in heterogeneous explosives // Phys. Fluids. 1980. Vol. 23. No. 12. P. 2362–2372. DOI: 10.1063/1.862940 URL: http://aip.scitation.org/doi/abs/10.1063/1.862940

8. *Shock* initiation experiments and modeling of composition B and C-4 / P.A. Urtiew, K.S. Vandersall, C.M. Tarver, G. Frank, J.W. Forbes // 13th International Detonation Symposium. Norfolk, VA, United States July 23–28, 2006.

Кобылкин Иван Федорович — д-р техн. наук, профессор кафедры «Высокоточные летательные аппараты» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Павлова Ирина Александровна — аспирантка кафедры «Высокоточные летательные аппараты» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Просьба ссылаться на эту статью следующим образом:

Кобылкин И.Ф., Павлова И.А. Возбуждение детонации в снаряжении оболочечных взрывных устройств при воздействии высокоскоростных ударников с разной формой головной части // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2017. № 3. С. 54–65. DOI: 10.18698/0236-3941-2017-3-54-65

SHOCK INITIATION OF CASED EXPLOSIVES BY A HIGH-SPEED STRIKER WITH WARHEAD OF DIFFERENT FORMS

I.F. Kobylkin	kobylkin_ivan@mail.ru
I.A. Pavlova	i.a.yakovenko@yandex.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
The article describes the results of numerical simulation of shock initiation process in the 5 mm-thick steel shell-cased explosive charges when compact strikers affect spherical and conical warheads and the flat face. We identified the critical velocity of shock initiation for charges with composition B and TNT under the impact of 1016 mm-diameter strikers	Cased explosive charge, shock initia- tion, shock wave, numerical simula- tion, decomposition kinetics

REFERENCES

[1] Kobylkin I.F., Selivanov V.V. Vozbuzhdenie i rasprostranenie vzryvnykh prevrashcheniy v zaryadakh vzryvchatykh veshchestv [Explosive transformation incitation and propagation in explosive charges]. Moscow, Bauman MSTU Publ., 2015. 354 p.

[2] Bahl K.L., Vantine H.C., Weingart R.C. The shock initiation of bare and covered explosive by projectile impact. *The 7th Symp. (Intern.) on Detonation*, Annapolis (Maryland, USA), 1981, pp. 858–863.

[3] Dobratz B.M., Crawford P.C. Properties of chemical explosives and explosive simulants. LLNL, University of California, Livermore, 1985.

[4] AutodynTM. Interactive non-linear analysis software. Theory manual. Century Dynamics Inc., 1998. 244 p.

[5] Orlenko L.P., ed. Fizika vzryva. T. 1 [Physics of explosions. Vol. 1]. Moscow, Fizmatlit Publ., 2004. 832 p.

[6] Orlenko L.P., ed. Fizika vzryva. T. 2 [Physics of explosions. Vol. 2]. Moscow, Fizmatlit Publ., 2004. 656 p.

[7] Lee E.L., Tarver C.M. Phenomenological model of shock initiation in heterogeneous explosives. *Phys. Fluids*, 1980, vol. 23, no. 12, pp. 2362–2372. DOI: 10.1063/1.862940 Available at: http://aip.scitation.org/doi/abs/10.1063/1.862940

[8] Urtiew P.A., Vandersall K.S., Tarver C.M., Frank G., Forbes J.W. Shock initiation experiments and modeling of composition B and C-4. *13th International Detonation Symposium*, Norfolk, VA, United States July 23–28, 2006.

Kobylkin I.F. — Dr. Sc. (Eng.), Professor of High Precision Aircraft Department, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Pavlova I.A. — post-graduate student of High Precision Aircraft Department, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Please cite this article in English as:

Kobylkin I.F., Pavlova I.A. Shock Initiation of Cased Explosives by a High-Speed Striker with Warhead of Different Forms. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.* [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2017, no. 3, pp. 54–65. DOI: 10.18698/0236-3941-2017-3-54-65

