ФАЗОВЫЙ АНАЛИЗ И ОПТИЧЕСКИЕ ФУНКЦИИ КОМПОЗИТОВ НА БАЗЕ ПОЛИЭТИЛЕНА НИЗКОЙ ПЛОТНОСТИ С НАПОЛНИТЕЛЯМИ БИОЛОГИЧЕСКОГО ПРОИСХОЖДЕНИЯ

Э.М. Годжаев¹
Ш.В. Алиева¹
В.В. Салимова²

geldar-04@mail.ru serefxanim@mail.ru vefa24@mail.ru

¹Азербайджанский технический университет, г. Баку, Азербайджан ²Азербайджанское национальное аэрокосмическое агентство, г. Баку, Азербайджан

Аннотация	Ключевые слова
Проведен фазовый анализ, исследована частотная зави- симость диэлектрической проницаемости. Рассчитаны оптические функции реальной и мнимой частей коэф- фициентов преломления, отражения, поглощения, мнимой части обратной величины комплексной диэлек- трической проницаемости, реальной и мнимой частей оптической электропроводности композиционных и нанокомпозиционных материадов на базе полизтилена	Микрорельеф поверхности, рент- генофазовый анализ, диэлектриче- ская проницаемость, оптические функции
низкой плотности с наполнителями биологического	Поступила в редакцию 09.11.2016
происхождения	© МГТУ им. Н.Э. Баумана, 2017

Введение. Известно, что большую долю отходов промысловых рыб в основном составляют биологические материалы (кости, кожа и чешуя), которые в реальных условиях перерабатывающих предприятий преимущественно направляют на производство кормовой муки. Такие биологические материалы относятся к коллагенсодержащему сырью, перспективному для получения натуральных структур образователя, имеющего широкий спектр применения в отраслях народного хозяйства [1–3]. Желатин, получаемый при переработке коллагенсодержащего сырья, представляет собой гидролизованный раствор коллагена. Он имеет ряд особенностей и является уникальным веществом по химическому и аминокислотному составу и специфическим физико-химическим характеристикам. Актуальность использования коллагена не вызывает сомнений, так как по своей природе коллаген это белок соединительной ткани — ценный источник пищевых волокон, по своему составу не уступающий наземным источникам балластных веществ [4-7]. Уникальные физико-химические характеристики, присущие белкам, позволяют использовать коллаген в различных направлениях деятельности человека. Из коллагенового материала производятся мембраны, монослои и многослойные структуры. В работе [8] показано эффективное использование пьезоэлектрических свойств биологических материалов. Например, с помощью золотых контактов можно получить миниатюрный генератор альтернативной энергии, который используют для вживляемых приборов электронного мониторинга организма и приборов, контролирующих поступление лекарства в организм.

Для удовлетворения быстро растущих требований современной техники необходимы поиск и получение новых материалов с новыми комплексными физико-химическими свойствами, например таких, как композиционные материалы, главным преимуществом которых является то, что материалы и конструкции создаются одновременно и свойствами материала управляют, меняя содержание и состав матрицы и наполнителя. Свойства композиционного материала существенно зависят от материала наполнителя. В современной литературе имеются многочисленные работы, посвященные получению и исследованию композиционных материалов с различными наполнителями [9]. В настоящей работе для получения композиционных материалов нового типа в качестве наполнителя использован биологический материал — кости рыбы (Кр). Цель работы получение новых композиционных материалов с биологическим наполнителем, проведение их фазового анализа, исследование диэлектрических свойств и определение оптических констант.

Методика эксперимента. Для получения биологических композиционных материалов в качестве матрицы был использован полиэтилен низкой плотности (ПЭНП марки М-158), а в качестве наполнителя — рыбьи кости. Для получения порошков наполнителя их поверхность сначала тщательно очищали и осушали, постепенно повышая температуру до 50 °C, с выдержкой при этой температуре в течение 10 мин, затем Кр в специальной мельнице перемалывались в порошок. Содержание бионаполнителя в композиционных материалах варьировалось в пределах от 0 до 7 % об. Композиты получали из гомогенной смеси порошков компонентов матрицы и наполнителя с помощью обогреваемого пресса при температуре 420 К и давлении 15 МПа. Режим кристаллизации закалки — быстрое охлаждение образцов в смеси вода-лед. Образцы для измерения дисперсионных зависимостей диэлектрических характеристик готовили в виде дисков диаметром 50 мм и толщиной ~170 мкм. Надежный электрический контакт электродов обеспечивали смазыванием их серебряной пастой. Диэлектрическую проницаемость є и диэлектрические потери tg δ измеряли с помощью моста E8-7 при переменном токе на частоте 25...1000 кГц по методике, описанной в работе [10]. Погрешности измерения ε и tgδ составляли 5 и 9 % соответственно. Нанокомпозиты ПЭНП + х. % об. Кр +1 % Al₂O₃ (с добавкой наночастиц 1 % об. Al₂O₃) толщиной 80 нм были получены по этой же технологии.

Рентгенофазовый анализ проводили на установке ДРОН-2 (CuK_{α} — излучение, $\lambda = 1,54178$ Å). Погрешность определения параметров решетки составляла 0,005Å.

Микрорельеф поверхности композитов ПЭНП + х. % об. Кр и нанокомпозитов ПЭНП + х. % об. Кр + 1 % Al₂O₃ был исследован методом сканирующего зондового микроскопа в атомно-силовом режиме.

Известно, что сканирующая зондовая микроскопия — один из мощных современных методов исследования морфологии и локальных свойств поверхности твердого тела с высоким пространственным разрешением [11]. Изображение получали специальным образом организованным сканированием образца. Сначала зонд двигался над образцом вдоль определенной линии, при этом сигнал на исполнительном элементе был пропорционален рельефу поверхности и записывался в память компьютера, затем зонд возвращался в исходную точку и переходил на следующую строку сканирования, и процесс повторялся вновь.

Реальные и мнимые части диэлектрической проницаемости данных композитов ПЭНП + х. % об. Кр и нанокомпозитов ПЭНП + х. % об. Кр + 1 %Al₂O₃ были определены по формулам:

$$\varepsilon_i = \varepsilon \operatorname{tg} \delta; \ \varepsilon_r = \frac{\varepsilon}{\sqrt{1 + \operatorname{tg}^2 \delta}}.$$

Результаты и их обсуждение. Рентгенограммы наполнителя — Кр получены при температурах 27, 350, 410 и 550 °С (рис. 1).

Рис. 1. Рентгенограмма Кр
 кутума при различных температурах: 1-27 К;
 2-350 К; 3-410 К; 4-550 К

Как следует из рис. 1, с увеличением температуры интенсивность дифракционных картин существенно увеличивается, а это свидетельствует о том, что с увеличением температуры происходит кристаллизация кости рыбы.

Результаты исследования микрорельефа поверхности композитов ПЭНП + + х. % об. Кр и нанокомпозитов ПЭНП + х. % об. Кр + 1 % Al₂O₃ в 2D- и 3D- режимах приведены на рис. 2.

Экспериментальные значения электроемкости и диэлектрической проницаемости композитов ПЭНП + х. % об. Кр и нанокомпозитов ПЭНП + х. % об. Кр + 1 % Al₂O₃ в зависимости от частоты, вычисленные по формулам реальной и мнимой частей диэлектрической проницаемости, приведены в таблице.

a, *c* — x = 3 % об.; *б*, *д* — x = 5 % об.; *в*, *e* — x = 7 % об., 2D- и 3D-масштабах (скан 24 × 24 мк)

ν, кГц	x = 3		x = 5		x = 7		x = 3 + + 1 % Al ₂ O ₃		x = 5 + +1 % Al ₂ O ₃		x = 7 + + 1 % Al ₂ O ₃	
	ε _r	ε	ε _r	$\boldsymbol{\varepsilon}_i$	ε _r	ε	ε _r	E _i	ε _r	ε	ε _r	ε
0,025	12,789	0,384	11,702	0,234	10,235	0,151	7,911	0,059	8,428	0,337	10,631	0,641
0,5	12,078	0,121	11,559	0,088	10,246	0,072	7,728	0,077	8,489	0,340	10,214	0,675
1	11,976	0,109	11,415	0,057	10,267	0,027	7,769	0,016	8,557	0,026	10,338	0,057
5	11,873	0,083	11,296	0,045	10,297	0,025	7,708	0,039	8,485	0,058	10,235	0,102
10	11,822	0,065	11,074	0,039	10,205	0,022	7,708	0,038	8,475	0,051	10,195	0,092
20	11,771	0,067	11,007	0,048	10,175	0,037	7,644	0,027	8,465	0,042	10,154	0,091
100	11,781	0,064	10,850	0,043	10,205	0,037	7,677	0,046	8,153	0,060	10,072	0,094
200	11,812	0,038	10,867	0,031	10,216	0,015	7,718	0,031	8,496	0,042	10,072	0,071
500	12,078	0,018	10,860	0,011	10,441	0,002	7,892	0,002	8,680	0,009	10,236	0,032
1000	12,897	0,023	11,618	0,017	11,157	0,010	8,598	0,014	10,030	0,181	10,646	0,277

Диэлектрическая проницаемость композитов ПЭНП + х. % об. Кр и нанокомпозитов ПЭНП + х. % об. Кр + 1 % Al₂O₃ при различных частотах

Известно, что оптические свойства твердого тела с конечной проводимостью полностью определяются частотной зависимостью комплексной диэлектрической проницаемости $\varepsilon(\omega)$, мнимая часть которой связана с электропроводностью **о** выражением

$$\varepsilon(\omega) = \varepsilon_r(\omega) + i\varepsilon_i(\omega) = \varepsilon_r(\omega) + i\frac{4\pi\sigma}{\omega} = \left(\frac{c}{\upsilon}\right)^2 \tag{1}$$

или частотной зависимостью комплексного показателя преломления

$$\overline{n}(\omega) = n(\omega) + ik(\omega) = \frac{c}{\upsilon}, \qquad (2)$$

где ε_r и ε_i — действительная и мнимая части диэлектрической проницаемости; υ — фазовая скорость света в веществе; *n* — показатель преломления; *k* — показатель поглощения.

Эти оптические постоянные определяют фазу и затухание световой волны в веществе. Амплитуда световой волны в веществе убывает как $\exp(-\omega kx/c)$, поэтому интенсивность света пропорциональна $|E^2|$ (\vec{E} — электрический вектор световой волны) и уменьшается как

$$\exp\left(\frac{-2\omega kx}{c}\right) = \exp(-Kx),\tag{3}$$

где *К* — коэффициент поглощения, $K = 2\omega k/c = 4\pi k/\lambda$, и ее обратная величина равна глубине проникновения света в вещество волны (уменьшается в *е* раз).

Показатель преломления и показатель поглощения связаны с действительной ε_r и мнимой ε_i частями диэлектрической постоянной соотношениями:

$$\varepsilon_r = n^2 - k^2; \tag{4}$$

$$\varepsilon_i = 2nk = \frac{4\pi\sigma}{\omega},\tag{5}$$

где σ — проводимость при данной частоте ω .

Для определения оптических функций при данной частоте измеряют диэлектрическую проницаемость материала и, используя экспериментальные данные спектральной зависимости диэлектрической проницаемости, определяют оптические функции [12].

Реальная часть показателя преломления определялась выражением

$$n = \sqrt{\frac{1}{2} \left(\varepsilon_r + \sqrt{\varepsilon_r^2 + \varepsilon_i^2} \right)}.$$

Энергетические зависимости показателя преломления ПЭНП + х. % об. Кр и ПЭНП + х. % об. Кр + 1 % Al₂O₃ приведены на рис. 3.

Рис. 3. Частотные зависимости реальных частей коэффициентов преломления композитов ПЭНП + х. % об. Кр (*a*) и нанокомпозитов ПЭНП + х. % об. Кр + 1 % Al₂O₃ (*b*):

1 — ПЭНП; 2, 2′ — x = 3 % об.; 3, 3′ – x = 5 % об.; 4, 4′ — x = 7 % об.; 5 — ПЭНП + 1 % Al₂O₃

На рис. 3, *а* приведена частотная зависимость реальной части коэффициента преломления композитов ПЭНП + х. % об. Кр. Как следует из рис. 3, *а*, для композитов 97 % об. ПЭНП + 3 % об. Кр в диапазоне частот 0,025...200 кГц коэффициент преломления уменьшается от 3,58 до 3,47, а с увеличением частоты до 1000 кГц — увеличивается до 3,57. Для композита 95 % об. ПЭНП + + 5 % об. Кр уменьшение *n* наблюдается в диапазоне 0,025...500 кГц, а увеличение — в диапазоне 500...1000 кГц. Для композита 93 % об. ПЭНП + 7 % об. Кр в частотном диапазоне 25...500 кГц *n* остается постоянной, а в частотном диапазоне 500...1000 кГц увеличивается от 3,23 до 3,34.

Частотные зависимости нанокомпозитов ПЭНП + х. % об. Кр + 1 % Al₂O₃ приведены на рис. 3, *б*. Исследования проводились на композитах с наполнителями х = 0; 3; 5; 7 % об. Как видно на рис. 3, *б*, в частотном диапазоне 0,025...500 кГц реальная часть коэффициента преломления практически остается постоянной, а в диапазоне 500...1000 кГц — увеличивается. Увеличение *n* наблюдается и с увеличением объемного содержания наполнителя биологического происхождения.

Мнимая часть коэффициента преломления определяется формулой

$$k = \sqrt{\frac{1}{2} \left(-\varepsilon_r + \sqrt{\varepsilon_r^2 + \varepsilon_i^2} \right)}.$$

На рис. 4 представлены спектральные зависимости мнимых частей коэффициентов преломления композитов ПЭНП + х. % об. Кр и нанокомпозитов ПЭНП + х. % об. Кр + 1 % Al₂O₃. Как следует из рис. 4, *a*, для всех исследованных композитов ПЭНП + х. % об. Кр в частотном диапазоне 0,025...0,5 кГц *k* уменьшается, а в диапазоне 0,5...1000 кГц практически остается постоянной.

Рис. 4. Частотные зависимости мнимых частей коэффициентов преломления композитов ПЭНП + х. % об. Кр (*a*) и нанокомпозитов ПЭНП + х. % об. Кр + 1 % Al₂O₃ (*б*) (1-5 - см. рис. 3)

Изменения мнимой части коэффициента преломления нанокомпозитов (рис. 4, δ) в зависимости от частоты аналогичны частотной зависимости реальной части коэффициента преломления, т. е. в частотном диапазоне 0,025...0,9 Гц k остается постоянной, при частоте 1 кГц сильно уменьшается, при дальнейшем росте частоты до 500 кГц существенных изменений не наблюдается, а в диапазоне 500...1000 кГц увеличивается, в n(v) и k(v) зависимостях существенных дисперсий не обнаружено.

Коэффициент отражения при нормальном падении света определяется выражением

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}.$$

Результаты исследования частотных зависимостей коэффициентов отражения R композитов ПЭНП + х. % об. Кр и нанокомпозитов ПЭНП + х. % об. Кр + + 1 % Al₂O₃ приведены на рис. 5. Видно, что в частотном диапазоне 0,025...500 кГц R в зависимости от частоты изменяется линейно. При малых концентрациях наполнителя R незначительно уменьшается, в частотном диапазоне 500...1000 кГц наблюдается увеличение коэффициента отражения R.

Аналогичные частотные зависимости обнаружены и для нанокомпозитов ПЭНП + x. % об. Кр + 1 % Al_2O_3 (см. рис. 5, *б*).

Рис. 5. Частотные зависимости коэффициента отражения *R* композитов ПЭНП + + x. % об. Кр (*a*) и нанокомпозитов ПЭНП + x. % об. Кр + 1 % Al₂O₃ (*b*) (1-5 — см. рис. 3)

Для определения характеристической функции потерь энергии электронов использовали выражение

$$-\operatorname{Im}\left(\frac{1}{\varepsilon}\right) = \frac{\varepsilon_i}{\varepsilon_i^2 + \varepsilon_r^2}.$$

Спектральная характеристика мнимой части обратной величины комплексной диэлектрической проницаемости (Im(- ϵ^{-1})) приведена на рис. 6.

Рис. 6. Частотные зависимости спектральной характеристики мнимой части обратной величины комплексной диэлектрической проницаемости композитов ПЭНП + + х. % об. Кр (*a*) и нанокомпозитов ПЭНП + х. % об. Кр + 1 % Al₂O₃ (*b*) (1–5 — см. рис. 3)

Исследовались реальные и мнимые части оптической электропроводности композиционных материалов с наполнителями биологического происхождения. Реальная и мнимая части оптической электропроводности рассчитывались по формулам

$$\sigma_r = \frac{\omega \varepsilon_i}{4\pi} \varkappa \sigma_i = -\frac{\omega \varepsilon_r}{4\pi}$$

Зависимости $\sigma_r(E)$ и $\sigma_i(E)$ приведены на рис. 7. Видно, что частотные зависимости σ_i и σ_r для композитов ПЭНП + х. % об. Кр и нанокомпозитов имеют аналогичный характер, т. е. в частотном диапазоне 0,025...1 кГц практически не изменяются, а в частотном диапазоне 10...1000 кГц сильно увеличиваются. В композите 97 % об. ПЭНП + 3 % об. Кр σ_i и σ_r увеличиваются от 5,9 до 645 и от 0,03 до1,15 соответственно. Для композита x = 5 и 7 % об. увеличение σ_i и σ_r происходит от 5,5 до 581 и 0,01 до 0,87 соответственно. А для композита 93 % об. ПЭНП + 7 % об. Кр σ_i увеличивается от 5,1 до 581, а σ_r — от 0,01 до 0,5. Для нанокомпозитов ПЭНП + x. % об. Кр + 1 % Al₂O₃, в частотном диапазоне 10...1000 кГц также наблюдается сильное увеличение σ_i и σ_r .

Рис. 7. Частотные зависимости реальных (*a*, *b*) и мнимых (*b*, *c*) частей оптической электропроводности композитов ПЭНП + х. % об. Кр (*a*, *b*) и нанокомпозитов ПЭНП + х. % об. Кр + 1 % Al₂O₃ (*b*, *c*)

Увеличение в частотном диапазоне 10...1000 кГц σ_i для нанокомпозитов ПЭНП + х. % об. Кр + 1 % Al₂O₃ с наполнителями (х = 0; 3; 5; 7 % об.) составляет от 3,7 до 408; от 3,9 до 430; от 4,2 до 501; от 6,9 до 715 соответственно. Для этих же композитов увеличение σ_r составляет от 0,07 до 10; от 0,01 до 0,7; от 0,02 до 9,3 и от 0,04 до 13,8 соответственно.

Заключение. Получены новые композиционные материалы с наполнителями биологического происхождения, исследованы частотные зависимости диэлектрической проницаемости и рассчитаны оптические функции этих материалов. Выявлено, что с вариацией объемного содержания наполнителя и алюминиевых наночастиц можно управлять диэлектрическими и оптическими свойствами композитов.

ЛИТЕРАТУРА

1. Као Т.Х., Разумовская Р.Г. Разработка оптимальных режимов экстракции коллагена из отходов рыб Волго-Каспийского бассейна // Известия вузов. Пищевая технология. 2011. № 1. С. 33–36.

2. Киладзе А.Б. Рыбные отходы — ценное сырье // Рыбное хозяйство. 2004. № 3. С. 58.

3. Покусаева О.А., Захарова К.С., Долганова Н.В., Якубова О.С. Разработка пищевых пленок на основе ихтиожелатина // Научные достижения в решении актуальных проблем производства и переработки сырья, стандартизации и безопасности продовольствия: Тез. IV Междунар. науч.-практ. конф. молодых ученых, аспирантов, студентов. Киев: Нац. ун-т биоресурсов и природопользования Украины, 2014. С. 37–38.

4. *Creating* ultrathin nanoscopic collagen matrices for biological and biotechnological applications / D. Cisneros, J. Friedrichs, A. Taubenberger, C.M. Franz, D.J. Muller // Small. 2007. Vol. 3. No. 6. P. 956–963. DOI: 10.1002/smll.200600598

URL: http://onlinelibrary.wiley.com/doi/10.1002/smll.200600598/abstract

5. Кованов В.В., Сычеников И.А. Коллагенопластика в медицине. М.: Медицина, 1978. 256 с.

6. *Characterization* of fish bone catalyst for biodiesel production world academy of science / Sarina Sulaiman, N. Khairudin, P. Jamal, M.Z. Alam, Zaki Zainudin, S. Azmi // Engineering and Technology Int. J. of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering. 2014. Vol. 8. No. 5. P. 476–478. URL: http://waset.org/publications/9998233/ characterization-of-fish-bone-catalyst-for-biodiesel-production

7. *Muyonga J.H.*, *Cole C.G.B.*, *Duodu K.G.* Extraction and physicochemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin // Food Hydrocolloids. 2004. Vol. 18. No. 4. P. 581–592.

8. *Ghosh S.K., Mandal D.* High-performance bio-piezoelectric nanogenerator made with fish scale // Applied Physics Letters. 2016. Vol. 109. No. 10. DOI: 10.1063/1.4961623

URL: http://aip.scitation.org/doi/full/10.1063/1.4961623

9. *Берлин А.А.* Современные полимерные композиционные материалы // Соросовский образовательный журнал. 1995. № 1. С. 57–65.

10. Исследование микрорельефа поверхности и диэлектрических свойств композиций ПП + TlIn_{0,98}Ce_{0,02}Se₂ / Э.М. Годжаев, С.С. Сафарова, Д.М. Кафарова, К.Д. Гюльмамедов, Х.Р. Ахмедова // Электронная обработка материалов. 2013. № 49 (4). С. 1–5. URL: http://eom.phys.asm.md/ru/journal/shortview/890

11. *Миронов В.Л*. Основы сканирующей зондовой микроскопии. Нижний Новгород: ИФМ РАН, 2004. 114 с.

12. Уханов Ю.И. Оптические свойства полупроводников. М.: Наука, 1977. 356 с.

Годжаев Эльдар Мехрали оглы — д-р физ.-мат. наук, профессор, зав. кафедрой «Физика» Азербайджанского технического университета (Азербайджан, г. Баку, пр-т Гусейна Джавида, д. 25, АZ 1073).

Алиева Шарафханым Вагиф кызы — докторант Азербайджанского технического университета (Азербайджан, г. Баку, пр-т Гусейна Джавида, д. 25, АZ 1073).

Салимова Вафа Вали кызы — докторант Азербайджанского национального аэрокосмического агентства (Азербайджан, г. Баку, ул. Ахундова Сулеймана Сани, д. 1, АZ 1000).

Просьба ссылаться на эту статью следующим образом:

Годжаев Э.М., Алиева Ш.В., Салимова В.В. Фазовый анализ и оптические функции композитов на базе полиэтилена низкой плотности с наполнителями биологического происхождения // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2017. № 3. С. 90–101. DOI: 10.18698/0236-3941-2017-3-90-101

PHASE ANALYSIS AND OPTICAL FUNCTIONS OF COMPOSITES BASED ON LOW-DENSITY POLYETHYLENE WITH FILLERS OF BIOLOGICAL ORIGIN

E.M. Godzhaev¹ Sh.V. Alieva¹ V.V. Salimova² geldar-04@mail.ru serefxanim@mail.ru vefa24@mail.ru

¹Azerbaijan Technical University, Baku, Azerbaijan ²Azerbaijan National Aerospace Agency, Baku, Azerbaijan

Keywords	
The purpose of the research was to carry out the phase analysis and investigate the frequency dependence of the permittivity. We calculated the optical functions of the real and imaginary parts of the refractive index, reflec- tion, absorption coefficient, imaginary part of the recip- rocal of the complex dielectric permittivity, real and imaginary parts of the optical conductivity of composites and nanocomposites based on low density polyethylene with fillers of biological origin	orelief, X-ray phase ectric permittivity, ons

REFERENCES

[1] Kao T.Kh., Razumovskaya R.G. Processing with optimal mode of collagen extraction from the waste of volga-caspian basin's fish processing. *Izvestiya vuzov. Pishchevaya tekhnologiya*, 2011, no. 1, pp. 33–36 (in Russ.).

[2] Kiladze A.B. Fish waste — valuable product. *Rybnoe khozyaystvo*, 2004, no. 3, pp. 58.

[3] Pokusaeva O.A., Zakharova K.S., Dolganova N.V., Yakubova O.S. [Developing cling wrap on ichthyo-gelatin basis]. *Nauchnye dostizheniya v reshenii aktual'nykh problem proizvodstva i pererabotki syr'ya, standartizatsii i bezopasnosti prodovol'stviya: Tez. IV Mezhdunar. nauch.praktich. konf. molodykh uchenykh, aspirantov, studentov* [Scientific achievement in solving topical issues on production and raw material processing, standardization and food safety: Abs. IV Int. Sci.-Practice Conf. of Young Scientists, Post-graduate and Students]. Kiev, NUBIP Publ., 2014, pp. 37–38.

[4] Cisneros D.A., Friedrichs J., Taubenberger A., Franz C.M., Muller D.J. Creating ultrathin nanoscopic collagen matrices for biological and biotechnological applications. Small, 2007, vol. 3, no. 6, pp. 956–963. DOI: 10.1002/smll.200600598

Available at: http://onlinelibrary.wiley.com/doi/10.1002/smll.200600598/abstract

[5] Kovanov V.V., Sychenikov I.A., eds. Kollagenoplastika v meditsine [Collagen plastics in medicine]. Moscow, Meditsina Publ., 1978. 256 p.

[6] Sarina Sulaiman, Khairudin N., Jamal P., Alam M.Z., Zaki Zainudin, Azmi S. Characterization of fish bone catalyst for biodiesel production world academy of science. *Engineering and Technology Int. J. of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering*, 2014, vol. 8, no. 5, pp. 476–478. Available at: http://waset.org/publications/9998233/ characterization-of-fish-bone-catalyst-for-biodiesel-production

[7] Muyonga J.H., Cole C.G.B., Duodu K.G. Extraction and physicochemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. *Food Hydrocolloids*, 2004, vol. 18, no. 4, pp. 581–592.

[8] Ghosh S.K., Mandal D. High-performance bio-piezoelectric nanogenerator made with fish scale. *Applied Physics Letters*, 2016, vol. 109, no. 10. DOI: 10.1063/1.4961623 Available at: http://aip.scitation.org/doi/full/10.1063/1.4961623

[9] Berlin A.A. Advanced polymer composites. *Sorosovskiy obrazovatel'nyy zhurnal*, 1995, no. 1, pp. 57–65 (in Russ.).

[10] Godzhaev E.M., Safarova S.S., Kafarova D.M., Gyul'mamedov K.D., Akhmedova Kh.R. A study of the surface microrelief and dielectric properties of PP +TlIn0.98Ce0.02Se2 composites. *Surface Engineering and Applied Electrochemistry*, 2013, vol. 49, no. 4, pp. 267–271.
DOI: 10.3103/S1068375513040054 Available at: http://link.springer.com/article/10.3103/S1068375513040054

[11] Mironov V.L. Osnovy skaniruyushchey zondovoy mikroskopii [Fundamentals of scanning probe microscopy]. Nizhniy Novgorod, IPMRAS Publ., 2004, 114 p.

[12] Ukhanov Yu.I. Opticheskie svoystva poluprovodnikov [Optical properties of semiconductors]. Moscow, Nauka Publ., 1977. 356 p.

Godzhaev E.M. — Dr. Sc. (Phys.-Math.), Professor, Head of Physics Department, Azerbaijan Technical University (Guseina Dzhavida prosp. 25, Baku, AZ 1073 Azerbaijan).

Alieva Sh.V. — doctoral candidate, Azerbaijan Technical University (Guseina Dzhavida prosp. 25, Baku, AZ 1073 Azerbaijan).

Salimova V.V. — doctoral candidate, Azerbaijan National Aerospace Agency (Akhundova Suleimana Sani ul. 1, Baku, AZ 1000 Azerbaijan).

Please cite this article in English as:

Godzhaev E.M., Alieva Sh.V., Salimova V.V. Phase Analysis and Optical Functions of Composites Based on Low-Density Polyethylene with Fillers of Biological Origin. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.* [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2017, no. 3, pp. 90–101. DOI: 10.18698/0236-3941-2017-3-90-101