УТОЧНЕННОЕ РЕШЕНИЕ СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЗАДАЧЕ ИЗГИБА ОБОЛОЧЕЧНЫХ КОНСТРУКЦИЙ ВОЛНОВОДОВ

П.Н. Сильченко¹ И.В. Кудрявцев¹ М.М. Михнёв² О.Б. Гоцелюк² PSilchenko@sfu-kras.ru IKudryavcev@sfu-kras.ru mix@iss-reshetnev.ru gotselukoll@ngs.ru

¹ Сибирский федеральный университет, г. Красноярск, Российская Федерация ² АО «Информационные спутниковые системы» имени академика М.Ф. Решетнёва», г. Железногорск, Красноярский край, Российская Федерация

Аннотация

Предложено частное аналитическое решение системы нелинейных дифференциальных уравнений в частных производных для расчета напряженно-деформированного состояния тонкостенных прямых участков волноводов прямоугольного поперечного сечения в составе волноводно-распределительных систем космических аппаратов связи. Учтены основные требования по конструктивным и функционально-эксплуатационным параметрам волноводов при изгибе на основе положений теории пластин и оболочек с использованием полуобратного метода Сен-Венана в перемещениях и напряжениях, что позволяет определять напряженно-деформированное состояние в любой точке конструкции. Получены зависимости для определения уточненных значений нормальных напряжений в волноводе при изгибе и выявлено наличие локальных областей касательных напряжений в местах соединения пластинок, образующих его прямоугольное поперечное сечение

Ключевые слова

Волновод, прямой участок, тонкостенные элементы, пластинка, оболочка, неосесимметричное поперечное сечение, изгиб, система дифференциальных уравнений, полуобратный метод Сен-Венана, аналитическое решение, напряженнодеформированное состояние

Поступила в редакцию 22.06.2016 © МГТУ им. Н.Э. Баумана, 2017

Работа выполнена при поддержке гранта РФФИ № 16-48-242110

Введение. При выполнении расчетных и проектно-конструкторских работ по созданию конструкций антенно-фидерных и протяженных волноводно-распределительных систем (ВРС) с тонкостенным неосесимметричным поперечным сечением для новых перспективных космических аппаратов (КА) необходимо учитывать особенности нагрузочных состояний на всех этапах жизненного цикла и требования к их функциональному назначению.

Использование упрощенных моделей [1, 2] в виде одномерных стержней, имеющих эквивалентные геометрические и инерциальные характеристики, нагрузки и способы закрепления при оценке напряженно-деформированного состояния (НДС) волноводов не позволяют проводить анализ и создавать изделия с минимальными массогабаритными параметрами с учетом функционально-эксплуатационных характеристик.

Современные методы расчета и предлагаемые известные решения в большинстве случаев основаны на гипотезах теории стержней, что позволяет только в первом приближении оценить работу всей конструкции без учета особенностей нагрузочных состояний всех этапов жизненного цикла и специальных требований к функциональному назначению. При этом нет возможности рассматривать НДС в локальных областях поперечного сечения, где могут возникать большие касательные напряжения, которые в тонкостенных конструкциях вызывают деформацию формы и размеров поперечного сечения.

Наиболее простым решением при расчетах протяженных конструкций волноводов неосесимметричного поперечного сечения является использование теории стержней с добавлением поправочных коэффициентов [3]. Однако получаемые результаты сильно зависят от выбора значений этих поправочных коэффициентов, которые в справочной литературе даны в зависимости от сочетания определенных размеров поперечного сечения стержня, и тогда их выбор для промежуточных значений может быть неопределенным [3].

Методы расчета, созданные на основе фундаментальных работ В.З. Власова [4], А.Р. Ржаницына [5], Д.В. Бычкова [6], являются развитием теории тонкостенных стержней с неосесимметричным поперечным сечением. Одним из достижений этих работ является оценка и учет депланации тонкостенного поперечного сечения стержней в случае действия больших касательных напряжений, например, при стесненном кручении или совместном действии изгиба и кручения. Однако уточненные основные зависимости теории стержней, полученные в [4–6] в целях учета только депланации поперечного сечения, не позволяют для волноводов тонкостенного неосесимметричного поперечного сечения в полной мере учитывать необходимые требования и особенности их работы.

В настоящей работе предложено использовать метод расчета [7], согласно которому любая тонкостенная пространственная конструкция представляется системой из отдельных элементов (пластинок, оболочек), соединенных между собой, для каждой из которых строится своя отдельная подсистема дифференциальных уравнений [8].

Сложность предлагаемого метода состоит в том, что к настоящему времени нет общего аналитического решения частной системы дифференциальных уравнений даже одной пластинки, тем более для полученной [8] общей глобальной системы дифференциальных уравнений модели прямого участка волновода, состоящей из четырех пластинок, образующих его прямоугольное поперечное сечение.

Постановка задачи. Волноводно-распределительная система является составной частью антенно-фидерного устройства КА связи и предназначена для передачи сигналов между блоками приемо-передающей аппаратуры и антеннами [7, 9, 10].

Рис. 1. Расчетная схема прямого участка волновода

Для учета особенностей нагрузочных состояний на всех этапах жизненного цикла и основных требований к функциональному назначению ВРС предлагается [7, 9, 10] прямой участок волновода представлять системой из соединенных под прямым углом четырех пластинок (рис. 1), для каждой из которых строится своя отдельная подсистема дифференциальных уравнений [8] с граничными условиями [11].

Система нелинейных дифференциальных уравнений [8, 7], учитывающая статическое, динамическое и температурное воздействия в прямом участке волновода, имеет вид

$$\nabla^{4} \varphi_{i} = E \Biggl[\Biggl(\frac{\partial^{2} \omega_{i}}{\partial \alpha_{i} \partial \beta_{i}} \Biggr)^{2} - \frac{\partial^{2} \omega_{i}}{\partial \alpha_{i}^{2}} \frac{\partial^{2} \omega_{i}}{\partial \beta_{i}^{2}} \Biggr] + E \alpha \nabla^{2} \left(T_{i} \left(\alpha_{i}, \beta_{i} \right) - T_{0i} \left(\alpha_{i}, \beta_{i} \right) \right);$$

$$\nabla^{4} \omega_{i} = \frac{t}{D} \Biggl[\frac{\partial^{2} \varphi_{i}}{\partial \beta_{i}^{2}} \frac{\partial^{2} \omega_{i}}{\partial \alpha_{i}^{2}} - 2 \frac{\partial^{2} \varphi_{i}}{\partial \alpha_{i} \partial \beta_{i}} \frac{\partial^{2} \omega_{i}}{\partial \alpha_{i} \partial \beta_{i}} + \frac{\partial^{2} \varphi_{i}}{\partial \alpha_{i}^{2}} \frac{\partial^{2} \omega_{i}}{\partial \beta_{i}^{2}} - 2 \Biggl], \qquad (1)$$

$$- q_{\alpha i} \frac{\partial \omega_{i}}{\partial \alpha_{i}} - q_{\beta i} \frac{\partial \omega_{i}}{\partial \beta_{i}} + q_{Zi} - \rho t \frac{\partial^{2} \omega_{i}}{\partial \tau^{2}} \Biggr],$$

где E — модуль Юнга; $\omega_i = \omega_i (\alpha_i, \beta_i)$ — функция прогибов для *i*-й пластинки; $\alpha_i \beta_i z_i$ — локальная система координат *i*-й пластинки; α — коэффициент теплового расширения; $\nabla^4 = \frac{\partial^4}{\partial \alpha_i^4} + 2 \frac{\partial^4}{\partial \alpha_i^2 \partial \beta_i^2} + \frac{\partial^4}{\partial \beta_i^4}$; $T_{0i} (\alpha_i, \beta_i)$, $T_i (\alpha_i, \beta_i)$ — начальное и текущее температурные поля *i*-й пластинки; t — толщина пластинок; D_i — цилиндрическая жесткость *i*-й пластинки прямого участка; $\varphi_i = \varphi_i (\alpha_i, \beta_i)$ функция Эри для напряжений в *i*-й пластинке; $q_{\alpha i}$, $q_{\beta i}$, q_{zi} — компоненты поверхностной нагрузки для *i*-й пластинки; ρ — плотность материала пластинок; τ — время; *i* = 1, 2, 3, 4 — номера пластинок.

В системе (1) для прямого участка каждая группа *i*-х уравнений описывает НДС только *i*-й пластинки, по контуру которой необходимо задать все граничные условия. Согласно данным работ [8, 7], граничные условия на боковых сторонах пластинок будут иметь вид

$$t \frac{\partial^{2} \varphi_{i+1}}{\partial \alpha_{i+1}^{2}} \bigg|_{\beta_{i+1}=b_{i}+1} = -D_{i} \left(\frac{\partial^{3} \omega_{i}}{\partial \beta_{i}^{3}} + \frac{\partial^{3} \omega_{i}}{\partial \beta_{i} \partial \alpha_{i}^{2}} \right) \bigg|_{\beta_{i}=-b_{i}};$$

$$\frac{\partial^{2} \varphi_{i+1}}{\partial \alpha_{i+1} \partial \beta_{i+1}} \bigg|_{\beta_{i+1}=b_{i+1}} = \frac{\partial^{2} \varphi_{i}}{\partial \alpha_{i} \partial \beta_{i}} \bigg|_{\beta_{i}=-b_{i}};$$

$$-D_{i} \left(\frac{\partial^{3} \omega_{i+1}}{\partial \beta_{i+1}^{3}} + \frac{\partial^{3} \omega_{i+1}}{\partial \beta_{i+1} \partial \alpha_{i+1}^{2}} \right) \bigg|_{\beta_{i+1}=b_{i+1}} = t \frac{\partial^{2} \varphi_{i}}{\partial \alpha_{i}^{2}} \bigg|_{\beta_{i}=-b_{i}};$$

$$\frac{\partial^{2} \omega_{i+1}}{\partial \alpha_{i+1}^{2}} + \mu \frac{\partial^{2} \omega_{i+1}}{\partial \beta_{i+1}^{2}} \bigg|_{\beta_{i+1}=-b_{i+1}} = \frac{\partial^{2} \omega_{i}}{\partial \alpha_{i}^{2}} + \mu \frac{\partial^{2} \omega_{i}}{\partial \beta_{i}^{2}} \bigg|_{\beta_{i}=-b_{i}}.$$

$$(2)$$

Краевые граничные условия, выраженные через перемещения и силовые факторы или в смешанном виде в локальной системе координат $\alpha_i\beta_iZ_i$ каждой пластинки на их торцах, будут определять действительные условия нагружения и закрепления в глобальной системе координат *XYZ* прямого участка в целом на его соответствующих сторонах (см. рис. 1).

Как показал проведенный анализ, в настоящее время отсутствуют частные и тем более общие аналитические решения для системы (1). Вместе с тем на основе существующих основных зависимостей теории упругости пластин и оболочек возможно построить частные аналитические решения даже для подобных дифференциальных уравнений, как система (1).

При наземной экспериментальной отработке воздействия статических, динамических и температурных нагрузок, имитирующих различные виды НДС на всех этапах их жизненного цикла, на КА в целом и волноводно-распределительные системы в частности было выявлено, что наиболее опасными являются изгибные деформации конструкций ВРС с соответствующими угловыми смещениями основных и промежуточных опор.

Рассмотрим пример аналитического решения по определению НДС волновода при изгибе его прямого участка относительно оси Z в глобальной системе координат под действием изгибающего момента M_Z (рис. 2, *a*) в плоскости минимальной жесткости, при котором возникают максимальные напряжения.

Рис. 2. Схема нагружения (а) и деформации поперечного сечения (б) прямого участка

При изотермическом процессе нагружения прямого участка в первом уравнении системы (1) температурная составляющая будет равна нулю: $E\alpha \nabla^2 (T_i (\alpha_i, \beta_i) - T_{0i} (\alpha_i, \beta_i)) = 0$, и поверхностная нагрузка при статическом

нагружении отсутствует: $q_{\alpha i} = q_{\beta i} = q_{zi} = 0$. Применительно только к данному частному случаю изгиба построение аналитического решения системы (1) осложняется взаимосвязанностью отдельных дифференциальных уравнений между собой и нелинейностью системы в целом.

При изгибе прямого участка (см. рис. 2, *a*) предполагается свободное деформирование составляющих его пластинок в поперечных направлениях Z_i , следовательно, в пластинках будет возникать плоское напряженное состояние, т. е. $\sigma_{Zi} = 0$.

В этом случае при действии изгибающего момента M_Z поперечное сечение прямого участка будет свободно деформироваться, изменяя размеры и последовательно принимая формы 1–4 (рис. 2, δ). При этом формы 1, 2 соответствуют упругому состоянию с выполнением принятого в линейной теории пластин и оболочек допущения о малости деформаций [12], а формы 3, 4 соответствуют потере устойчивости и пластическим деформациям [13], при которых эксплуатация ВРС недопустима.

Основной особенностью качественной работы волноводов является обстоятельство, заключающееся в том, что при эксплуатации волноводов размеры и форма канала внутреннего поперечного сечения должны оставаться практически постоянными, допуская изменения не более чем на 0,1 %.

Применительно к расчетной схеме прямого участка волновода это означает, что возможность потери устойчивости формы поперечного сечения полностью исключается и при действии на него изгибающего момента M_Z , каждая пластинка 1–4 будет изгибаться только в одной плоскости своей локальной системы координат $\alpha_i \beta_i Z_i$, оставаясь в других координатных плоскостях без изменения формы. Эти деформационные особенности работы пластинок в составе изогнутого прямого элемента будут выполнены при условии

$$\theta_{\beta_i} = \frac{\partial \omega_i}{\partial \beta_i} = 0. \tag{3}$$

С геометрической точки зрения, условие (3) эквивалентно требованию, чтобы линии, образующие поперечное сечение участка, под нагрузкой оставались прямыми.

Подстановка условия (3) в систему (1) и граничные условия (2) приводит к их упрощению; условия (2) примут вид

$$\nabla^4 \varphi_i = 0; \quad \nabla^4 \omega_i = 0; \tag{4}$$

$$\frac{\partial^2 \varphi_{i+1}}{\partial \alpha_{i+1}^2} \bigg|_{\beta_{i+1}=b_{i+1}} = 0; \quad \frac{\partial^2 \varphi_i}{\partial \alpha_i^2} \bigg|_{\beta_i = -b_i} = 0;$$

$$\frac{\partial^2 \varphi_{i+1}}{\partial \alpha_{i+1} \partial \beta_{i+1}} \bigg|_{\beta_{i+1}=b_{i+1}} = \frac{\partial^2 \varphi_i}{\partial \alpha_i \partial \beta_i} \bigg|_{\beta_i = -b_i}; \quad \frac{\partial^2 \omega_{i+1}}{\partial \alpha_{i+1}^2} \bigg|_{\beta_{i+1} = -b_{i+1}} = \frac{\partial^2 \omega_i}{\partial \alpha_i^2} \bigg|_{\beta_i = -b_i}.$$
(5)

Граничные условия (5) в местах соединения пластинок 1-2, 2-3, 3-4 и 4-1 не учитывают изменение прямого угла между ними в процессе деформирования поперечного сечения прямого участка волновода при изгибе (формы 1-2, см. рис. 2, δ), что допустимо вследствие принятых ограничений на изменение всех размеров его внутреннего канала.

Решение задачи. Для решения рассматриваемой задачи (4) используем полуобратный метод Сен-Венана с непосредственным определением напряжений (функции Эри $\varphi_i(\alpha_i, \beta_i)$) и перемещений (прогибы $\omega_i(\alpha_i, \beta_i)$). В результате получим частные решения для отдельных пластинок, объединение которых и будет аналитическим решением рассматриваемой задачи изгиба прямого участка волновода в целом.

В случае изгиба прямого участка решение для функций $\phi_i(\alpha_i, \beta_i)$ и $\omega_i(\alpha_i, \beta_i)$ можно построить на основе особенностей НДС каждой *i*-й пластинки (см. рис. 2, *a*). Боковые пластинки 2 и 4 испытывают чистый изгиб в своей плоскости; пластинки 1 и 3 подвергаются растяжению и сжатию соответственно в сочетании с изгибом по кривой, образованной деформированными краями пластинок 2 и 4.

Определение функций напряжений $\varphi_i(\alpha_i, \beta_i)$ для пластинок. Получить выражения для функций Эри $\varphi_i(\alpha_i, \beta_i)$, непосредственно определяющие напряжения в *i*-й пластинке прямого участка волновода, согласно полуобратному методу Сен-Венана можно на основе приближенных подходов, в качестве которых примем решение согласно классической теории стержней [1] с соответствующим распределением нормальных напряжений (рис. 3, *a*) по известной формуле Навье.

С учетом особенностей НДС *i*-й пластинки прямого участка (см. рис. 3, *a*), выражения для функций Эри $\phi_i(\alpha_i, \beta_i)$ [14] и принятых обозначений примут вид:

$$\varphi_{1}(\alpha_{1}, \beta_{1}) = a_{1}\frac{\beta_{1}^{2}}{2}; \quad \varphi_{2}(\alpha_{2}, \beta_{2}) = a_{2}\frac{\beta_{2}^{3}}{6}, \quad -\frac{H}{2} \le \beta_{2} \le +\frac{H}{2};$$

$$\varphi_{3}(\alpha_{3}, \beta_{3}) = -a_{3}\frac{\beta_{3}^{2}}{2}; \quad \varphi_{4}(\alpha_{4}, \beta_{4}) = a_{4}\frac{\beta_{4}^{3}}{6}, \quad -\frac{H}{2} \le \beta_{4} \le +\frac{H}{2}.$$

$$(6)$$

Коэффициенты α_i в выражениях (6) определяются из краевых условий (2) по линиям соединения (размеры *b*' и *h*', рис. 3, *б*) срединных поверхностей пластинок в составе прямого участка:

$$a_1 = \frac{M_{Z1,3}}{J_{Z1,3}} \frac{h'}{2}; \quad a_2 = \frac{M_{Z2}}{J_{Z2}}; \quad a_3 = -\frac{M_{Z1,3}}{J_{Z1,3}} \frac{h'}{2}; \quad a_4 = -\frac{M_{Z4}}{J_{Z4}}, \tag{7}$$

где $J_{Z_{i,j}}$ — осевой момент инерции относительно оси Z для части поперечного сечения (см. рис. 3, δ), образованного пластинками *i*, *j* (*i*, *j* = 1, 2, 3, 4, *i* \geq *j*); $M_{Z_{i,j}}, M_{Z_i}$ — составляющие изгибающего момента M_Z , действующие на пла-

Рис. 3. Общая схема напряженного состояния (*a*) и геометрия поперечного сечения (*б*) прямого участка при изгибе

стинки *i*, *j* (см. рис. 3, *a*); $J_Z = \frac{BH^3 - bh^3}{12}$ — осевой момент инерции всего поперечного сечения (см. рис. 3, *б*).

В рассматриваемом случае прямого участка волновода имеем

$$J_{Z1,3} = \frac{b}{12} (H^3 - h^3), \quad J_{Z2} = J_{Z4} = \frac{tH^3}{12};$$
(8)

$$M_{Z1,3} = M_Z \ \frac{J_{Z1,3}}{J_Z}, \ M_{Z2} = M_Z \ \frac{J_{Z2}}{J_Z}, \ M_{Z4} = M_Z \ \frac{J_{Z4}}{J_Z}.$$
 (9)

Подставив (7) в выражения (6), получим искомые функции:

$$\varphi_{1}(\alpha_{1}, \beta_{1}) = \beta_{1}^{2} \frac{M_{Z}}{J_{Z}} \frac{h'}{4}; \quad \varphi_{2}(\alpha_{2}, \beta_{2}) = \frac{M_{Z}}{J_{Z}} \frac{\beta_{2}^{3}}{6}, \quad -\frac{H}{2} \le \beta_{2} \le +\frac{H}{2};$$

$$\varphi_{3}(\alpha_{3}, \beta_{3}) = -\beta_{3}^{2} \frac{M_{Z}}{J_{Z}} \frac{h'}{4}; \quad \varphi_{4}(\alpha_{4}, \beta_{4}) = -\frac{M_{Z}}{J_{Z}} \frac{\beta_{4}^{3}}{6}, \quad -\frac{H}{2} \le \beta_{4} \le +\frac{H}{2}.$$

$$(10)$$

Анализ зависимостей (10) показывает, что они определяют только постоянную составляющую напряжений в пластинках 1 и 3 по толщине, равную напряжениям, определенным в их срединных плоскостях. Но пластинки 1 и 3 из-за искривления соединенных с ними пластинок 2 и 4 дополнительно будут испытывать и изгибную деформацию [10, 15]. Следовательно, полученные зависимости (10) для пластинок 1 и 3 необходимо дополнить выражениями, учитывающими изгибные напряжения от их внецентренного растяжения-сжатия в составе прямого участка волновода. Искомыми выражениями являются функции прогибов $\omega_i = \omega_i (\alpha_i, \beta_i)$ пластинок 1 и 3, которые определяются деформациями их боковых сторон, сопряженных с пластинками 2 и 4 (см. рис. 3, *a*).

Функции прогибов $\omega_i = \omega_i (\alpha_i, \beta_i)$. Рассмотрим деформации *i*-й пластинки прямого участка (см. рис. 1). Пластинки 2 и 4, согласно (3), изгибаются каждая в своей плоскости (рис. 4), следовательно, прогибы в их локальных системах координат $\alpha_i \beta_i Z_i$ (см. рис. 1) из плоскости равны нулю:

$$\omega_2(\alpha_2, \beta_2) = \omega_4(\alpha_4, \beta_4) = 0. \tag{11}$$

Рис. 4. Деформация боковой пластинки 2 (*a*) и деформация ее поперечного сечения в своей плоскости (*б*)

Функции прогибов пластинок 1 и 3 определяются деформациями боковых сторон сопряженных с ними пластинок 2 и 4 [15]. Поскольку расчетные схемы для боковых пластинок 2 и 4 эквивалентны, то достаточно рассматривать НДС только пластинки 2 и только в своей плоскости $\alpha_2\beta_2$ (см. рис. 4).

Согласно зависимостям теории упругости [14], перемещения пластинки 2 можно записать как

$$u_{2} = -\frac{\alpha_{2}\beta_{2}}{\rho_{\alpha 2}} = -\alpha_{2}\beta_{2}\frac{M_{Z}}{EJ_{Z}}, \quad v_{2} = \frac{M_{Z}}{2EJ_{Z}} \Big[\alpha_{2}^{2} + \mu \big(\beta_{2}^{2} - Z_{2}^{2}\big)\Big], \quad w_{2} = \mu\beta_{2}Z_{2}\frac{M_{Z}}{EJ_{Z}}.$$
 (12)

Перемещения боковой стороны пластинки 2 при $\beta_2 = \pm \frac{h'}{2}$ и $Z_2 = 0$ (см. рис. 4) [15] будут являться и прогибами пластинки 1 по линии их соединения (см. рис. 1), т. е.

Уточненное решение системы дифференциальных уравнений в задаче изгиба...

$$\nu_2 = \omega_1 = \frac{h'}{2} - \frac{M_Z}{2EJ_Z} \left[\alpha_1^2 + \mu \frac{h'^2}{4} \right].$$
(13)

Аналогичные зависимости будут определять перемещения на линиях соединения остальных пластинок 2 и 3, 4 и 3, 4 и 1 между собой (см. рис. 1).

Объединим функции $\omega_i(\alpha_i, \beta_i)$ прогибов (11) и (13) для каждой пластинки:

$$\omega_{1} = \frac{h'}{2} - \frac{M_{Z}}{2EJ_{Z}} \left[\alpha_{1}^{2} + \mu \frac{h'^{2}}{4} \right]; \quad \omega_{2} \left(\alpha_{2}, \beta_{2} \right) = 0; \\
 \omega_{3} = \frac{h'}{2} + \frac{M_{Z}}{2EJ_{Z}} \left[\alpha_{3}^{2} + \mu \frac{h'^{2}}{4} \right]; \quad \omega_{4} \left(\alpha_{4}, \beta_{4} \right) = 0.$$
(14)

С помощью найденных функций напряжений $\phi_i(\alpha_i, \beta_i)$ (10) и прогибов $\omega_i(\alpha_i, \beta_i)$ (14) для каждой отдельной пластинки можно построить решение для системы дифференциальных уравнений (4) с граничными условиями (5).

Аналитическое решение для рассматриваемой системы дифференциальных уравнений (4) можно получить из разрешающих функций (10) и (14), которые при изгибе прямого участка волновода примут вид:

$$\begin{split} \phi_{1} &= \beta_{1}^{2} \frac{M_{Z}}{J_{Z}} \frac{h'}{4}; \qquad w_{1} = \frac{h'}{2} - \frac{M_{Z}}{2EJ_{Z}} \left[\alpha_{1}^{2} + \mu \frac{h'^{2}}{4} \right]; \\ \phi_{2} &= \frac{M_{Z}}{J_{Z}} \frac{\beta_{2}^{3}}{6}; \qquad w_{2} = 0; \\ \phi_{3} &= -\beta_{3}^{2} \frac{M_{Z}}{J_{Z}} \frac{h'}{4}; \qquad w_{3} = -\frac{h'}{2} + \frac{M_{Z}}{2EJ_{Z}} \left[\alpha_{3}^{2} + \mu \frac{h'^{2}}{4} \right]; \\ \phi_{4} &= -\frac{M_{Z}}{J_{Z}} \frac{\beta_{4}^{3}}{6}; \qquad w_{4} = 0. \end{split}$$
(15)

Используя выражения (15), можно определить напряжения и деформации в любой точке *i*-й пластинки (*i* = 1, 2, 3, 4), составляющих прямой участок волновода, при его изгибе.

Максимальные нормальные напряжения. На обеспечение требований прочности, жесткости и функционально-эксплуатационных характеристик волноводов существенное влияние будут оказывать максимальные напряжения, возникающие как в отдельных пластинках, образующих прямоугольное поперечное сечение, так и в местах их соединения.

Согласно теории пластин и оболочек, результирующие нормальные напряжения, действующие в любой *i*-й пластинке прямого участка волновода, будут определяться суммой продольных $\sigma_{\phi i}$ и изгибных $\sigma_{\omega i}$ компонентов напряжений [14]:

$$\sigma_{\alpha i} = \sigma_{\varphi i} + \sigma_{\omega i} = \frac{\partial^2 \varphi_i}{\partial \beta_i^2} - \frac{EZ_i}{1 - \mu^2} \left(\frac{\partial^2 \omega_i}{\partial \alpha_i^2} + \mu \frac{\partial^2 \omega_i}{\partial \beta_i^2} \right);$$
(16)

$$\sigma_{\beta i} = \sigma_{\varphi i} + \sigma_{\omega i} = \frac{\partial^2 \varphi_i}{\partial \alpha_i^2} - \frac{EZ_i}{1 - \mu^2} \left(\frac{\partial^2 \omega_i}{\partial \beta_i^2} + \mu \frac{\partial^2 \omega_i}{\partial \alpha_i^2} \right);$$
(17)
$$\sigma_{zi} = 0.$$

Подставив аналитическое решение (15) в выражения (16), (17), получим максимальные значения нормальных напряжений $\sigma_{\alpha max}$, которые будут действовать на наружных поверхностях пластинок 1 и 3 при

$$Z_1 = \frac{t}{2} \ \text{i} \ Z_3 = -\frac{t}{2}. \tag{18}$$

Например, для пластинки 1 после подстановки (15) в (16) получим

$$\sigma_{\alpha 1 \max} = \frac{M_Z}{J_Z} \left(\frac{h'}{2} + \frac{t}{2} \frac{1}{(1 - \mu^2)} \right).$$
(19)

Примечательно, что выражения для нормальных напряжений, определяемых по формулам (16) и (17) для пластинок 2 и 4, будут аналогичны известной формуле Навье [1]:

$$\sigma_{\alpha 2} = \frac{M_Z}{J_Z} \beta_2, \quad \sigma_{\alpha 4} = \frac{M_Z}{J_Z} \beta_4.$$
(20)

Максимальные нормальные напряжения в пластинках 2 и 4 будут равны

$$\sigma_{\alpha 2\max} = \sigma_{\alpha 4\max} = \frac{M_Z}{J_Z} \frac{H}{2}.$$
 (21)

Максимальные нормальные напряжения, действующие в местах соединения пластинок 1-2, 2-3, 3-4, 4-1, должны быть равны между собой. Например, в месте соединения пластинок 1-2 должно выполняться соотношение

$$\sigma_{\alpha 1 \max} = \sigma_{\alpha 2 \max}$$

Однако, сравнивая выражения (19) и (21) для нормальных напряжений в пластинках 1 и 2, выявили, что они различаются на $(1-\mu^2)$. Очевидно, что при условии

$$\left(1-\mu^2\right)\approx 1\tag{22}$$

полученное выражение (16) преобразуется в формулу Навье (21)

$$\sigma_{\alpha 1 \max} = \frac{M_Z}{J_Z} \left(\frac{h'}{2} + \frac{t}{2} \frac{1}{(1 - \mu^2)} \right) = \frac{M_Z}{J_Z} \left(\frac{h'}{2} + \frac{t}{2} \right) = \frac{M_Z}{J_Z} \frac{H}{2}$$
(23)

при $(1-\mu^2) \to 1$.

Условие (22) эквивалентно неучету сдавливания продольных волокон пластинок прямого участка в их поперечных направлениях вдоль осей β_i , что является одной из основополагающих гипотез теории стержней при изгибе [1] и не приводит к большим погрешностям в расчетах только при относительно малых размерах стержневых элементов в их поперечных направлениях (*H*, *B* / *L* < 0,1) (см. рис. 1). Для пластинок 1 и 3, которые изгибаются (см. рис. 4), указанная гипотеза неприемлема вследствие сопоставимости их размеров в продольных α_i и поперечных направлениях β_i (*i* = 1, 3).

Выявленное различие на величину $(1-\mu^2)$ является дополнением, которое уточняет решение, полученное по формуле Навье при изгибе пластинок 1, 3 от их внецентренного растяжения-сжатия в составе тонкостенного прямоугольного поперечного сечения (см. рис. 4) стержня (прямого участка волновода).

Расчет нормальных напряжений по уточненным зависимостям приводит к тому, что в местах соединения пластинок напряженное состояние будет неоднородным. На рис. 5 приведено распределение нормальных напряжений $\sigma_1(\alpha, \beta)$ и $\sigma_2(\alpha, \beta)$ для прямого участка и для области соединения его пластинок 1 и 2 между собой.

Рис. 5. Уточненная схема НДС прямого участка при изгибе:

а — напряжения прямого волновода; *б* — напряжения в месте соединения пластинок 1-2

В месте соединения пластинок 1-2 (рис. 5, *б*) нормальные напряжения в характерных точках можно записать как

$$\sigma_{1\max} = \frac{M_Z}{J_Z} \left(\frac{h'}{2} + \frac{t}{2} \frac{1}{(1-\mu^2)} \right); \quad \sigma_{1\min} = \frac{M_Z}{J_Z} \left(\frac{h'}{2} - \frac{t}{2} \frac{1}{(1-\mu^2)} \right); \quad (24)$$

$$\sigma_{2\max} = \frac{M_Z}{J_Z} \frac{H}{2}; \quad \sigma_{2\min} = \frac{M_Z}{J_Z} \frac{h}{2}; \quad \sigma_{1m} = \sigma_{2m} = \frac{M_Z}{J_Z} \frac{h'}{2}.$$
 (25)

В местах соединения пластинок 2-3, 3-4, 4-1 зависимости (24), (25) для определения нормальных напряжений будут аналогичными, но с учетом направлений их локальных систем координат $\alpha_i \beta_i Z_i$ (см. рис. 1).

Максимальные касательные напряжения. Как следует из зависимостей (19) и (21), для пластинок 1 и 2 нормальные напряжения в месте соединения этих пластинок скачкообразно изменяются (см. рис. 5). Это вызывает появление в данном месте касательных напряжений

$$\tau(\alpha, \beta) = \sigma_1(\alpha, \beta) - \sigma_2(\alpha, \beta).$$
(26)

Появление касательных напряжений при изгибе прямого участка, имеющего прямоугольное поперечное сечение, вызвано различием НДС каждой отдельной тонкостенной пластинки, соединенных между собой и образующих конструкцию волновода как единого целого (см. рис. 3), что рассмотрено ранее. Значения касательных напряжений в месте соединения пластинок 1-2 (рис. 5, δ), согласно (26), (19) и (21), можно определить как

$$\tau = \frac{M_Z}{J_Z} \left(\frac{h'}{2} + Z_1 \frac{1}{1 - \mu^2} \right) - \frac{M_Z}{J_Z} \beta_2 = \frac{M_Z}{J_Z} Z_1 \frac{\mu^2}{1 - \mu^2},$$
(27)

где $\beta_2 = \frac{h'}{2} + Z_1$ — взаимосвязь локальных координат пластинок 1 и 2 в местах соединения.

Максимальное и минимальное значения касательных напряжений в месте соединения пластинок 1-2 достигаются (27) на наружной и внутренней поверх-

ностях пластинки 1 при $Z_1 = \frac{t}{2}$ и $Z_1 = -\frac{t}{2}$ и равны $\tau_{\text{max/min}} = \pm \frac{M_Z}{I_Z} \frac{t}{2} \frac{\mu^2}{(1-\mu^2)}.$ (28)

Аналогичная ситуация будет возникать и в местах соединения между собой остальных пластинок 2-3, 3-4 и 4-1.

Выявленные касательные напряжения в местах соединения пластинок, образующих прямоугольное поперечное сечение, являются локальными, самоуравновешивающимися (см. рис. 5) и не влияют на общее НДС прямого участка волновода.

Для оценки величины и степени опасности выявленных касательных напряжений (28) сравним их максимальное значение по отношению к максимальным нормальным напряжениям (19):

$$\Delta = \frac{\tau_{\text{max}}}{\sigma_{\text{max}}} = -\frac{t\mu^2}{h(1-\mu^2)+t}.$$
(29)

В большинстве встречающихся на практике волноводов выполняются соотношения

 $t/h \le 0,1$ и $\mu \approx 0,3,$

при которых выражение (29) примет значение

$$\Delta = \frac{\tau_{\max}}{\sigma_{\max}} \cdot 100 \quad \% \approx 1 \quad \%.$$
(30)

Полученное относительное значение для максимальных касательных напряжений сопоставимо с погрешностями, вносимыми допущениями теории

пластин и оболочек и, следовательно, не требует отдельного рассмотрения при оценке прочности волноводов, имеющих цельное поперечное сечение.

Сравнительная оценка результатов расчета. Верификация полученного аналитического решения для нормальных (24) и касательных (28) напряжений выполнена по известным аналитическим и численным методикам, сравнительный анализ которых представлен в работе [16], поэтому в настоящей статье приведены только краткие выводы.

Сравнительные расчеты изгибных нормальных напряжений по формуле Навье, по теории тонкостенных стержней и МКЭ в ANSYS для различных типов конечных элементов показали хорошую сходимость результатов.

Среди рассмотренных сравнительных методик наиболее близкими оказались численные результаты, полученные МКЭ в ANSYS при использовании оболочечных КЭ Shell181, где различия не превышают 0,4 % в рассматриваемом диапазоне геометрических размеров поперечных сечений волноводов.

Заключение. Получено аналитическое решение для системы дифференциальных уравнений применительно к изгибу прямого участка волновода на основе предложенного способа моделирования тонкостенных стержней с неосесимметричным прямоугольным поперечным сечением, образованным отдельными тонкостенными элементами (пластинками).

При построении аналитического решения использован полуобратный метод Сен-Венана в перемещениях и напряжениях для каждой из пластинок поперечного сечения.

Полученное решение позволило уточнить формулу Навье при определении нормальных изгибных напряжений и выявить касательные напряжения в локальных местах соединения пластинок, составляющих прямоугольное поперечное сечение прямых участков волноводов. Проведенные расчеты изгибных нормальных напряжений прямых участков волноводов по формуле Навье и МКЭ в ANSYS для различных типов конечных элементов показали хорошую сходимость результатов: 0,1...3,1 % в широком диапазоне геометрических параметров поперечного сечения волноводов.

Использование полученных результатов при проектировании волноводнораспределительных систем КА с различными типоразмерами поперечных сечений позволит улучшить их функционально-эксплуатационные характеристики, уменьшить массу, оптимизировать трассировку прокладки волноводов и расстановку промежуточных опор, а также радиусы и технологию изготовления криволинейных участков.

Результаты исследований использованы в проектно-конструкторских и технологических работах при создании волноводно-распределительных и антенно-фидерных систем космических аппаратов типов «Экспресс», «Луч» и др.

ЛИТЕРАТУРА

1. Феодосьев В.И. Сопротивление материалов. М.: Изд-во МГТУ им. Н.Э. Баумана, 1999. 592 с.

2. Феодосьев В.И. Избранные задачи и вопросы по сопротивлению материалов. М.: Наука, 1967. 376 с.

3. Агамиров Л.В. Сопротивление материалов. М.: Астрель, 2003. 256 с.

4. Власов В.З. Избранные труды. Т. 2: Тонкостенные упругие стержни. Принципы построения общей технической теории оболочек. М.: Изд-во АН СССР, 1963. 507 с.

5. Ржаницын А.Р. Строительная механика. М.: Высшая школа, 1982. 400 с.

6. Бычков Д.В. Строительная механика стержневых тонкостенных конструкций. М.: Госстройиздат, 1962. 387 с.

7. Сильченко П.Н., Кудрявцев И.В., Михнёв М.М. Методика расчета напряженнодеформированного состояния волноводно-распределительных систем космических аппаратов // Журнал СФУ. Техника и технологии. 2012. № 2. С. 150–161.

8. Сильченко П.Н., Кудрявцев И.В., Михнёв М.М. Система дифференциальных уравнений для элемента волноводного тракта космических аппаратов // Междунар. конф. по дифференциальным уравнениям и динамическим системам. Суздаль, 2–7 июля 2010 г. С. 172–174.

9. *Анализ* динамического состояния волноводно-распределительных систем от воздействия вибрационных нагрузок на этапе вывода космического аппарата на орбиту / П.Н. Сильченко, И.В. Кудрявцев, М.М. Михнёв, В.И. Халиманович, В.Н. Наговицин // Журнал СФУ. Техника и технологии. 2012. № 2. С. 205–219.

10. Sil'chenko P.N., Mikhnev M.M., Ankudinov A.V., Kudryavtsev I.V. Ensuring the strength and accuracy of large-size waveguide distribution systems of communication satellites // Journal of Machinery Manufacture and Reliability. 2012. Vol. 41. No. 1. P. 91–95.

DOI: 10.3103/S1052618811060173

URL: https://link.springer.com/article/10.3103/S1052618811060173

11. Тимошенко С.П., Войновский-Кригер С. Пластинки и оболочки / пер. с англ. М.: Эдиториал УРСС, 2009. 640 с.

12. Новожилов В.В., Черных К.Ф., Михайловский Е.И. Линейная теория тонких оболочек. СПб.: Изд-во СПбГУ, 2010. 380 с.

13. *Kecman D*. Bending collapse of rectangular and square section tubes // Int. J. Mech. Sci. 1983. Vol. 25. No. 9-10. P. 623–636. DOI: 10.1016/0020-7403(83)90072-3

URL: http://www.sciencedirect.com/science/article/pii/0020740383900723

14. Александров А.В. Основы теории упругости и пластичности. М.: Высшая школа, 1990. 400 с.

15. *Сильченко П.Н., Кудрявцев И.В., Михнёв М.М., Гоцелюк О.Б.* Некоторые подходы к получению решения системы дифференциальных уравнений для элемента волноводного тракта КА // Вестник НИЯУ МИФИ. 2015. Т. 4. № 1. С. 19–24.

16. Сильченко П.Н., Кудрявцев И.В., Михнёв М.М., Гоцелюк О.Б. Сравнительная оценка решений системы дифференциальных уравнений в задаче изгиба прямых участков волноводов космических аппаратов связи // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2017. № 1. С. 4–23. DOI: 10.18698/0236-3941-2017-1-4-23 **Сильченко Пётр Никифорович** — д-р техн. наук, профессор Сибирского федерального университета (Российская Федерация, 660041, г. Красноярск, Свободный пр-т, д. 79).

Кудрявцев Илья Владимирович — канд. техн. наук, доцент Сибирского федерального университета (Российская Федерация, 660041, г. Красноярск, Свободный пр-т, д. 79).

Михнёв Михаил Михайлович — канд. техн. наук, доцент, главный технолог АО «Информационные спутниковые системы» имени академика М.Ф. Решетнёва» (Российская Федерация, 662972, Красноярский край, г. Железногорск, ул. Ленина, д. 52).

Гоцелюк Ольга Борисовна — инженер 1-й категории АО «Информационные спутниковые системы» имени академика М.Ф. Решетнёва» (Российская Федерация, 662972, Красноярский край, г. Железногорск, ул. Ленина, д. 52).

Просьба ссылаться на эту статью следующим образом:

Сильченко П.Н., Кудрявцев И.В., Михнёв М.М., Гоцелюк О.Б. Уточненное решение системы дифференциальных уравнений в задаче изгиба оболочечных конструкций // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2017. № 5. С. 4–21. DOI: 10.18698/0236-3941-2017-5-4-21

A REFINED SOLUTION TO THE SYSTEM OF DIFFERENTIAL EQUATIONS IN THE PROBLEM OF BENDING IN THIN-SHELL WAVEGUIDE STRUCTURES

P.N. Sil'chenko ¹
I.V. Kudryavtsev ¹
M.M. Mikhnev ²
O.B. Gotselyuk ²

PSilchenko@sfu-kras.ru IKudryavcev@sfu-kras.ru mix@iss-reshetnev.ru gotselukoll@ngs.ru

¹ Siberian Federal University, Krasnoyarsk, Russian Federation
 ² Information Satellite Systems — Reshetnev Company JSC, Zheleznogorsk, Krasnoyarskiy Kray, Russian Federation

Abstract	Keywords
We suggest a particular analytical solution to a system of linear partial differential equations for computing the stress state parameters of thin-walled straight sections belonging to waveguides found in waveguide switch systems of communication spacecraft. We take into account the basic requirements for structural, functional and performance parameters of waveguides subjected to bending, using the concepts of the plate and shell theory employing the semi-inverse Saint-Venant method for displacements and stresses that makes it possible to find the stress-strain state at any point in the structure. We derive equations determining refined normal stress values in a waveguide subjected to bending and deduce the presence of local tangent stress regions in the zones where the plates forming its cross section join	Waveguide, straight section, thin-walled elements, plate, shell, nonaxisymmetric cross-section, bending, system of differential equations, semi-inverse Saint-Venant method, analytical solution, stress- strain state

REFERENCES

[1] Feodos'ev V.I. Soprotivlenie materialov [Materials strength]. Moscow, Bauman MSTU Publ., 1999. 592 p.

[2] Feodos'ev V.I. Izbrannye zadachi i voprosy po soprotivleniyu materialov [Select problems and questions on materials strength]. Moscow, Nauka Publ., 1967. 376 p.

[3] Agamirov L.V. Soprotivlenie materialov [Materials strength]. Moscow, Astrel' Publ., 2003. 256 p.

[4] Vlasov V.Z. Izbrannye Trudy. T. 2: Tonkostennye uprugie sterzhni. Printsipy postroeniya obshchey tekhnicheskoy teorii obolochek [Select as. Vol. 2. Thin-walled elastic rods. Constructing principles of general technical theory of shells]. Moscow, AN SSSR Publ., 1963. 507 p.

[5] Rzhanitsyn A.R. Stroitel'naya mekhanika [Structural mechanics]. Moscow, Vysshaya Shkola Publ., 1982. 400 p.

[6] Bychkov D.V. Stroitel'naya mekhanika sterzhnevykh tonkostennykh konstruktsiy [Structural mechanics of thin-walled rod constructions]. Moscow, Gosstroyizdat Publ., 1962. 387 p.

[7] Sil'chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Nagovitsin V.N. Method of stressdeformation distribution computation for waveguide spacecraft systems. *Zhurnal SFU. Tekhnika i tekhnologii* [Journal of SibFU. Engineering and Technologies], 2012, no. 2, pp. 150–161 (in Russ.).

[8] Sil'chenko P.N., Kudryavtsev I.V., Mikhnev M.M. Differential equation system for spacecraft waveguide cell. *Mezhd. konf. po diff. uravneniyam i dinamicheskim sistemam* [Int. conf. on differential equations and dynamic systems. Suzdal', July 2–7, 2010]. Pp. 172–174 (in Russ.).

[9] Sil'chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Khalimanovich V.I., Nagovitsin V.N. Dynamic state analysis of waveguide distribution systems from vibration loads effects while launching spacecraft into the orbit. *Zhurnal SFU. Tekhnika i tekhnologii* [Journal of SibFU. Engineering and Technologies], 2012, no. 2, pp. 205–219 (in Russ.).

[10] Sil'chenko P.N., Mikhnev M.M., Ankudinov A.V., Kudryavtsev I.V. Ensuring the strength and accuracy of large-size waveguide distribution systems of communication satellites. *Journal of Machinery Manufacture and Reliability*, 2012, vol. 41, no. 1, pp. 91–95.

DOI: 10.3103/S1052618811060173

Available at: https://link.springer.com/article/10.3103/S1052618811060173

[11] Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells. McGraw Hill, 1959.591 p. (Russ. ed.: Plastinki i obolochki. Moscow, Editorial URSS Publ., 2009. 640 p.).

[12] Novozhilov V.V., Chernykh K.F., Mikhaylovskiy E.I. Lineynaya teoriya tonkikh obolochek [First-order theory of thin shells]. Sankt-Petersburg, SPbGU Publ., 2010. 380 p.

[13] Kecman D. Bending collapse of rectangular and square section tubes. *Int. J. Mech. Sci.*, 1983, vol. 25, no. 9-10, pp. 623–636. DOI: 10.1016/0020-7403(83)90072-3

Available at: http://www.sciencedirect.com/science/article/pii/0020740383900723

[14] Aleksandrov A.V. Osnovy teorii uprugosti i plastichnosti [Fundamentals of elasticity and plasticity theory]. Moscow, Vysshaya Shkola Publ., 1990. 400 p.

[15] Sil'chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Gotselyuk O.B. Some approaches to obtaining a solution of the system of differential equations for an element of the waveguide system of a spacecraft. *Vestnik NIYaU MIFI*, 2015, vol. 4, no. 1, pp. 19–24 (in Russ.).

[16] Sil'chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Gotselyuk O.B. Comparative evaluation of differential equation solutions in the problem of waveguide straight sections bend in communication spacecraft. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.* [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2017, no. 1, pp. 4–23 (in Russ.). DOI: 10.18698/0236-3941-2017-1-4-23

Sil'chenko P.N. — Dr. Sc. (Eng.), Professor, Siberian Federal University (Svobodnyy prospekt 79, Krasnoyarsk, 660041 Russian Federation).

Kudryavtsev I.V. — Cand. Sc. (Eng.), Assoc. Professor, Siberian Federal University (Svobodnyy prospekt 79, Krasnoyarsk, 660041 Russian Federation).

Mikhnev M.M. — Cand. Sc. (Eng.), Assoc. Professor, Chief Technology Officer, Information Satellite Systems — Reshetnev Company JSC (Lenina ul. 52, Zheleznogorsk, Krasnoyarskiy kray, 662972 Russian Federation).

Gotselyuk O.B. — engineer of the 1st rank, Information Satellite Systems — Reshetnev Company JSC (Lenina ul. 52, Zheleznogorsk, Krasnoyarskiy kray, 662972 Russian Federation).

Please cite this article in English as:

Sil'chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Gotselyuk O.B. A Refined Solution to the System of Differential Equations in the Problem of Bending in Thin-Shell Waveguide Structures. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.* [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2017, no. 5, pp. 4–21. DOI: 10.18698/0236-3941-2017-5-4-21