УДК 623.445:539.411.5

АНАЛИТИЧЕСКАЯ МОДЕЛЬ ПРОБИТИЯ КЕРАМИКО-МЕТАЛЛИЧЕСКИХ ЗАЩИТНЫХ ПРЕГРАД И ИХ ОПТИМИЗАЦИЯ

И.Ф. Кобылкин	kobylkin_ivan@mail.ru
А.А. Горбатенко	selenta92@mail.ru

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация	Ключевые слова
Получены аналитические формулы для расчета пре-	Двухслойные преграды, керамика,
дельной скорости пробития двухслойных керамико-	предельная скорость пробития,
металлических защитных преград, учитывающие	оптимизация
структурные характеристики преграды и физико-	
механические свойства материалов ударника и пре-	
грады. С помощью полученных формул выполнено	
исследование баллистической стойкости преград и	
показана возможность оптимизации их структуры.	
Полученные результаты согласуются с известными	
экспериментальными данными. В диапазоне поверх-	
ностных плотностей преграды 3050 кг/м ² для раз-	
ных материалов подложек определены оптимальные	
относительные толщины керамических слоев, обес-	
печивающие максимальное значение предельных	
скоростей пробития. Выявлено, что эти значения	
слабо зависят от поверхностных плотностей преград	
и определяются главным образом плотностью мате-	Поступила в редакцию 07.11.2016
риалов подложек	© МГТУ им. Н.Э. Баумана, 2018

Введение. Двухслойные защитные преграды, состоящие из внешнего керамического слоя и тыльной металлической подложки, широко используются для бронезащиты авиационной и автомобильной техники от действия бронебойных пуль, имеющих высокую проникающую способность [1]. Высокая противопульная стойкость таких преград обеспечивается наличием керамики, высокотвердого, но очень хрупкого материала. Особенностями пробития керамических слоев преград, определяющими их высокую противопульную стойкость, являются задержка начала проникания ударника в керамику и ее разрушение в области воздействия в форме усеченного конуса, обращенного большим основанием к подложке [1]. Угол раствора разрушенного керамического конуса изменяется в пределах $2\alpha = 100...130^\circ$. Однако сама керамическая преграда имеет невысокую противопульную стойкость [2]. Для проявления ее защитных свойств необходима достаточно прочная энергоемкая подложка.

Аналитическая зависимость для предельной скорости пробития двухслойных преград с внешним керамическим слоем. Обзор работ, в которых предлагались аналитические зависимости для расчета предельных скоростей

пробития двухслойных преград, приведен в [3]. Общим недостатком этих работ является тот факт, что не учтены важнейшие составляющие процесса пробития преграды. Во-первых, не учитывается разрушение ударника и связанное с этим уменьшение кинетической энергии ударника. Во-вторых, недостаточно последовательно учитываются или вовсе не учитываются разрушение керамики и затраты на это кинетической энергии ударника.

В настоящей статье предлагается модель, в которой учтены процессы деформирования и разрушения ударника, разрушение керамического конуса и деформирование подложки. Геометрия взаимодействия ударника с преградой, соответствующая рассматриваемой модели, приведена на рис. 1.

Рис. 1. Схема взаимодействия ударника с двухслойной преградой:

1 — ударник; 2 — разлетающаяся в радиальном направлении разрушенная часть ударника; 3 — керамический слой; 4 — металлическая подложка; 5 — разрушенный керамический конус

Основные положения модели. 1. Вследствие высокой твердости керамики проникание ударника в керамику происходит с временной задержкой t_p , в течение которой ударник разрушается (срабатывается) на керамическом слое как на жесткой преграде, а в керамике формируется разрушенная коническая область.

2. После формирования разрушенного керамического конуса оставшаяся часть ударника, конус и часть подложки, расположенной под основанием конуса, движутся с одинаковой скоростью *v*₁, определяемой из закона сохранения импульса.

Для сформулированной модели взаимодействия ударника с преградой запишем закон сохранения импульса, в котором, следуя Рехту [4], выделим в виде самостоятельного члена импульс *I*, передаваемый преграде в течение времени задержки проникания:

$$M_{\rm yg} v_0 = (M_{\rm yg1} + M_{\rm K} + m_{\rm m}) v_1 + I,$$

где M_{yg} и v_0 — начальные масса и скорость ударника; M_{yg1} — масса ударника после срабатывания в течение времени задержки проникания; M_{κ} — масса керамического конуса; *m*_п — масса вовлеченной в движение деформируемой части подложки. Из этого уравнения следует соотношение для скорости *v*₁:

$$v_1 = \frac{M_{\rm yg} v_0 - I}{M_{\rm yu1} + M_{\rm K} + m_{\rm u}}.$$
 (1)

Закон сохранения энергии для рассматриваемого процесса может быть записан в следующем виде:

$$\frac{M_{\rm yg}v_0^2}{2} = \frac{\left(M_{\rm yg1} + M_{\rm K} + m_{\rm II}\right)v_1^2}{2} + \frac{\left(M_{\rm yg} - M_{\rm yg1}\right)v_0^2}{2} + A_1 + A_2 + A_3.$$

Согласно закону сохранения энергии, в процессе взаимодействия с преградой кинетическая энергия ударника преобразуется в кинетическую энергию совместно движущихся оставшейся части ударника, керамического конуса и части подложки, на которую опирается конус (первый член в правой части); в кинетическую энергию разрушенной или сработавшейся части ударника, разлетающейся в радиальном направлении (второй член в правой части); в работы разрушения ударника A_1 и керамики A_2 , а также в работу деформирования подложки A_3 .

В предельных условиях пробития преграды кинетическая энергия движущихся в осевом направлении оставшейся части ударника, керамического конуса и части подложки преобразуется в работу деформирования и разрушения подложки, на которую опирается разрушенный керамический конус:

$$\frac{\left(M_{\rm yg1} + M_{\rm K} + m_{\rm \pi}\right)v_1^2}{2} = A_3.$$
 (2)

Поскольку смещения элементов преграды на стадии задержки проникания не происходит, считаем, что импульс силы контактного давления частично передается преграде. Импульс *I*, передаваемый преграде, можно оценить исходя из потерянной кинетической энергией ударника ΔE_{yg} , затрачиваемой на совершение работ разрушения ударника A_1 и керамики A_2 , по формулам:

$$\Delta E_{y\mu} = A_1 + A_2, \quad I = \sqrt{2M_{y\mu}\Delta E_{y\mu}}.$$
(3)

Работу деформирования и разрушения ударника оценим следующим образом. Пусть ударник срабатывает при некотором постоянном напряжении σ_{ya} , характеризующем динамический предел прочности на сжатие. Тогда работа его деформирования и разрушения будет равна

$$A_1 = \xi_{yz} \sigma_{yz} \varepsilon_{yz} \Delta V_{yz}$$
 ,

где ξ_{уд} — коэффициент, учитывающий сложный характер деформации ударника; ε_{уд} — предельная деформация материала ударника; ΔV_{уд} — объем разрушенной или сработавшей части ударника. Разрушенный или сработавший объем ударника ΔV_{уд} приближенно можно определить так:

$$\Delta V_{
m yg} \approx rac{\pi d^2 \Delta l}{4},$$

где $\Delta l \approx v_0 t_p$ — укорочение ударника. Обычно Δl задается соотношением $\Delta l = nh$ (n — определяется экспериментально или с помощью численного моделирования). Укорочение бронебойно-зажигательной пули Б-32 калибра 7,62 мм при взаимодействии с керамиками Al_2O_3 и SiC в широком диапазоне скоростей в среднем составляет $\Delta l = (1, 2-1, 9)h$ [1, с. 139].

Поскольку керамика является упругохрупким материалом, то работу разрушения керамического конуса A₂ можно найти, приравняв ее к максимально возможной энергии упругого деформирования керамики [2]:

$$A_2 \approx A_f = \frac{\xi_{\kappa} \sigma_{c\pi}^2}{2E} V_{\kappa}, \tag{4}$$

где ξ_{κ} — коэффициент, учитывающий неодномерность деформации керамики в разрушенном конусе; σ_{c*} — предел прочности керамики на сжатие; V_{κ} — объем разрушенного керамического конуса.

С учетом соотношения (3) и приведенных выражений для работ A_1 и A_2 перепишем формулу (1) в виде

$$\nu_{1} = \frac{M_{yz}\nu_{0} - \sqrt{2M_{yz}\left(\xi_{yz}\sigma_{yz}\varepsilon_{yz}\Delta V_{yz} + \frac{\xi_{\kappa}\sigma_{cw}^{2}}{2E}V_{\kappa}\right)}}{M_{yz1} + M_{\kappa} + m_{\pi}}.$$
(5)

Предельная работа пластического деформирования металлической подложки *А*₃ может быть определена в приближении ее одномерного растяжения с учетом неравномерности деформаций:

$$A_3 \approx \xi_{\Pi} \sigma_{\Pi} \varepsilon_{\Pi} V_{\Pi}, \tag{6}$$

где ξ_п — коэффициент, учитывающий неравномерность и динамический характер деформации части подложки, расположенной под выбиваемым керамическим конусом; σ_п, ε_п — динамический предел текучести и предельная деформация материала металлической подложки; V_д — объем деформированной части подложки.

Подставляя полученные соотношения (5) для *v*₁ и (4), (6) для работ деформирования в формулу (2) и решая ее относительно скорости ударника, получаем формулы для предельной скорости пробития двухслойной керамикометаллической преграды:

$$v_{\rm ncn} = \sqrt{\frac{2\left(M_{\rm yg1} + M_{\rm K} + m_{\rm n}\right)}{M_{\rm yg}^2}} \xi_{\rm n} \sigma_{\rm n} \varepsilon_{\rm n} V_{\rm n} + \sqrt{\frac{2}{M_{\rm yg}}} \left(\xi_{\rm yg} \sigma_{\rm yg} \varepsilon_{\rm yg} \Delta V_{\rm yg} + \frac{\xi_{\rm K} \sigma_{\rm c,\rm K}^2}{2E} V_{\rm K}\right).$$
(7)

Начальная масса ударника $M_{\rm yg}$ и масса оставшейся части ударника $M_{\rm yg1}$ рассчитываются по формулам:

$$M_{\rm yg} = \rho_{\rm yg} \frac{\pi d^2 l}{4}, \quad M_{\rm yg1} = \rho_{\rm yg} \frac{\pi d^2 (l - \Delta l)}{4}.$$

Масса керамического конуса равна произведению плотности керамики ρ_{κ} на объем усеченного конуса:

$$V_{\kappa} = \frac{\pi h}{12} \left(D^2 + d^2 + Dd \right).$$

Масса деформируемой части подложки *m*_п равна произведению плотности материала подложки ρ_п на ее объем:

$$V_{\rm m} = \pi \delta_{\rm m} D^2 / 4$$
.

Диаметры ударника *d* и основания керамического конуса *D* связаны соотношением (см. рис. 1):

$$D = d + 2h \operatorname{tg} \alpha$$
.

Одной из наиболее важных конструктивных характеристик защитной структуры является ее поверхностная плотность *q* — масса защитной структуры единичной площади поверхности. Очевидна взаимосвязь между *q* и характеристиками защитной структуры:

$$q = \rho_{\kappa} h + \rho_{\pi} \delta.$$

Количественный анализ баллистической стойкости керамико-металлических преград. Проверить адекватность формулы (7) можно путем сравнения имеющихся экспериментальных данных и результатов расчета по этой формуле (табл. 1). Для сравнения использовались экспериментально определенные в [5] предельные скорости пробития двухслойной преграды, состоящей из слоя корундовой керамики плотностью $\rho_{\kappa} = 3,85$ г/см³ и толщиной 8,1 мм и подложки из прочного алюминиевого сплава 6061-Т6 со статическим пределом прочности $\sigma_{\pi} = 0,31$ ГПа и предельной деформацией удлинения $\varepsilon_{\pi} = 0,13$. Стальной ударник с плоским торцом диаметром 6,0 мм и массой 7,0 г имел длину 31,5 мм или 5,3*d*. Характеристики ударника близки к характеристикам стальных сердечников бронебойных пуль калибра 7,62 мм [1, 6]. Экспериментальные значения предельных скоростей пробития соответствующих преград приведены в третьем столбце табл. 1.

В расчетах характеристики материалов ударника и преграды выбирали в соответствии с данными, приведенными в работах [1, 2, 5–8]: предел прочности материала ударника и его предельная деформация $\sigma_{yg} = 2,0$ ГПа, $\varepsilon_{yg} = 0,15$. Коэффициент неодномерности деформации ударника ξ_{yg} принимался равным единице. Полагалось также, что в процессе срабатывания ударник укорачивался на величину диаметра, т. е. n = 1. Модуль упругости керамики E = 407 ГПа, ди-

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2018. № 2

намический предел прочности на сжатие $\sigma_{\kappa} = 3$ ГПа, половина угла при вершине керамического конуса $\alpha = \pi/3$, коэффициент неодномерности деформирования керамики ξ_{κ} принимался равным единице. Характеристики материала подложки выбирались такими же, как и в работе [5]: $\rho_{\pi} = 2,7$ г/см³, $\sigma_{\pi} = 0,31$ ГПа, $\varepsilon_{\pi} = 0,13$, но чтобы учесть упрочнение материала подложки вследствие ее динамического деформирования и неравномерность ее деформирования, коэффициент ξ_{π} принимался равным двум.

Таблица 1

Толщина алюминие-	Поверхностная плот-	Предельная скорость пробития <i>v</i> _{псп} , м/с	
вой подложки б, мм	ки δ, мм ность преграды <i>q</i> , кг/м ²	экспериментальная	расчетная
4	42	786-829	717
6	47,4	815-916	900
8	52,8	995-1091	1077

Сравнение расчетных и экспериментальных предельных скоростей пробития

Из табл. 1 следует хорошее совпадение экспериментальных и расчетных значений v_{ncn} для преград с толщиной подложки 6 и 8 мм. Для первой преграды, у которой толщина подложки $\delta = 4$ мм, различие экспериментальных и расчетных значений v_{ncn} достигает 10...12 %. Это можно объяснить тем, что более тонкая подложка имеет меньшую изгибную жесткость, вследствие чего в меньшей степени препятствует смещению керамического слоя. Поэтому угол раствора конуса разрушенной керамики может быть несколько большим. А незначительное увеличение полуугла раствора конуса α от 60 до 62,2° увеличивает расчетную скорость пробития от 717 до 802 м/с, что хорошо согласуется с приведенным в табл. 1 диапазоном экспериментально определенных v_{ncn} . Приведенное объяснение расхождения расчетных и экспериментальных значений v_{ncn} показывает сильную зависимость v_{ncn} от α .

Поскольку формула (7) в целом удовлетворительно согласуется с известными экспериментальными данными, она может быть использована для изучения баллистической стойкости керамико-металлических преград в зависимости от их структурных характеристик.

Приведенные на рис. 2, *а* зависимости предельной скорости пробития *v*_{псп} двухслойных преград от толщины подложки из алюминиевого сплава для ряда поверхностных плотностей преград с лицевым керамическим слоем из корундовой керамики Al₂O₃ имеют немонотонный характер.

Более отчетливо экстремальный характер проявляют зависимости v_{ncn} от относительной толщины керамического слоя $\overline{h} = h/(h+\delta)$ (рис. 2, *б*).

В диапазоне поверхностных плотностей преграды q = 30...50 кг/м² максимальное значение $v_{\text{псп}}$ достигается при относительной толщине керамического слоя $\overline{h} = 0, 6...0, 65$. Этот важный результат указывает на принципиальную возможность

Рис. 2. Зависимости предельной скорости пробития двухслойных преград от толщины подложки из алюминиевого сплава (*a*) и относительной толщины керамического слоя (*б*) для поверхностных плотностей преград:

оптимизации двухслойных преград с внешним керамическим слоем. В оптимальной преграде, соответствующей максимуму v_{ncn} , толщина керамического слоя из корунда должна быть больше в среднем в 1,7 раза толщины подложки из алюминиевого сплава. Согласно выполненным расчетам, оптимальная толщина керамического слоя увеличивается от 5,2 мм при q = 30 кг/м² ($v_{ncn} = 416$ м/с) до 9,3 мм при q = 50 кг/м² ($v_{ncn} = 1020$ м/с).

В работе [9] для оптимальной относительной толщины керамического слоя с той же подложкой получено значение $\overline{h}_{ont} = 0,77$, т. е. в оптимальной преграде толщина керамического слоя из корунда должна быть больше в 3,35 раза толщины подложки из алюминиевого сплава в диапазоне поверхностных плотностей от 20 до 60 кг/м². Такое большое различие в толщинах керамического и металлического слоев в оптимальной преграде можно объяснить, во-первых, малым углом раствора керамического конуса — в [9] $\alpha = 45^\circ$, что не соответствует экспериментальным данным [1], во-вторых, неучетом потери кинетической энергии ударника, а следовательно, и импульса ударника при его разрушении в течение времени задержки проникания.

Для сравнения баллистической стойкости преград с подложками из различных материалов были выполнены аналогичные расчеты для титановых и стальных подложек. Их характеристики приведены в табл. 2

Таблица 2

Характеристики материалов металлических подложек

Материал	Плотность, г/см ³	Прочность, ГПа	Предельная деформация
Алюминиевый сплав	2,7	0,3	0,13
Титановый сплав	4,5	1,0	0,15
Броневая сталь	7,8	1,2	0,12

Результаты расчетов для поверхностной плотности преград $q = 50 \text{ кг/m}^2$ приведены на рис. 3 и 4.

Рис. 3. Графики предельной скорости пробития двухслойных преград с титановой (1), алюминиевой (2) и стальной (3) подложками в зависимости от относительной толщины керамического слоя

Рис. 4. Зависимость предельной скорости пробития двухслойных преград от толщины титановой (1), алюминиевой (2) и стальной (3) подложек

Как следует из полученных результатов, лучшие защитные свойства имеют двухслойные преграды с титановой подложкой ($v_{ncn} = 1083 \text{ м/c}, \bar{h} = 0,75$), несколько худшие у преград с алюминиевой подложкой ($v_{ncn} = 1020 \text{ м/c}, \bar{h} = 0,63$). Стальные подложки из броневых сталей при условии равенства поверхностных плотностей преград обеспечивают заметно меньшую предельную скорость пробития. При этом максимальное значение $v_{ncn} = 928 \text{ м/c}$ достигается при $\bar{h} = 0,85$, что соответствует толщинам подложки $\delta = 1,8 \text{ мм}$ и керамического слоя 10,2 мм ($q = 50 \text{ кг/m}^2$) (см. рис. 4).

Отметим, что с уменьшением плотности материала подложки ее оптимальная толщина увеличивается. Расчетные значения максимальных скоростей пробития и соответствующие оптимальные величины \overline{h}_{ont} относительных толщин керамики для разных поверхностных плотностей и разных материалов подложек двухслойных преград приведены в табл. 3.

Таблица 3

Скорость, м/с, пробития при поверхностной Материал подложки плотности материала подложки q, кг/м² 30 40 45 50 Титановый сплав $\overline{h}_{0111} = 0,73-0,74$ 473 695 871 1082 Алюминиевый сплав $\overline{h}_{\text{опт}} = 0,6-0,65$ 416 657 820 1019 Сталь $\overline{h}_{\text{опт}} = 0,82 - 0,84$ 386 602 751 928

Скорости пробития двухслойных оптимальных преград с лицевым слоем из корундовой керамики стальным ударником диаметром 6 мм и массой 7 г

Несмотря на то что приведенные в табл. 3 результаты расчетов имеют оценочный характер, они качественно и количественно правильно отражают известные экспериментальные данные. Поэтому формулы (7), (8) и после уточнения входящих в них физико-механических характеристик материалов могут использоваться в инженерной практике не только для расчета предельных скоростей пробития двухслойных преград, но и для оптимизации их структуры.

Численное моделирование взаимодействия цилиндрических ударников с двухслойными керамико-металлическими структурами. Моделирование проводилось в численном пакете Ls-Dyna методом SPH. Для разных толщин двухслойных преград подбирали предельную скорость пробития. В качестве ударника был взят цилиндрический стержень длиной 31,5 мм, диаметром 6 мм. Материал ударника сталь У12а (табл. 4), материал керамического слоя преграды оксид алюминия, подложки — алюминиевый спав АМг6.

Таблица 4

Материал	Плотность, кг/м ³	Предел прочности на растяжение ов, МПа	Предел текуче- сти σ _т , МПа	Относительное удлинение δ, %
У12a	7820	1570	1370	9
АМг6	2640	345	200	19

Механические характеристики материалов

Уравнение состояния для керамики — полиномиальное, с моделью механического поведения Джонсона — Холмквиста. Для стали и алюминия уравнение состояния выбрано в форме Ми — Грюнайзена с упругопластической моделью механического поведения с упрочнением.

β

На рис. 5 и 6 приведены результаты расчета для преград разной толщины.

Рис. 5 (начало). Проникание ударника в двухслойную преграду (8 мм Al_2O_3 , 7 мм AMr6) в моменты времени t = 0 (*a*), t = 0,013 мс (*б*)

Рис. 5 (окончание). Проникание ударника в двухслойную преграду (8 мм Al_2O_3 , 7 мм AMr6) в момент времени t = 0,04 мс (*в*), распределение пластических деформаций для момента времени t = 0,024 мс (*г*)

Рис. 6 (начало). Проникание ударника в двухслойную преграду (11 мм Al₂O₃, 5 мм АМг6) в моменты времени *t* = 0 (*a*), *t* = 0,017 мс (*b*), *t* = 0,05 мс (*b*)

Рис. 6 (окончание). Проникание ударника в двухслойную преграду (11 мм Al_2O_3 , 5 мм AMr6), распределение пластических деформаций для момента времени t = 0,035 мс (*г*)

Значения предельных скоростей пробития, полученные численным методом, приведены в табл. 5. Для хорошего согласования численных и расчетных значений скоростей значение коэффициента, учитывающего неоднородность деформации подложки ξ_п, принималось равным 1,3. Численные значения также хорошо согласуются с имеющимися экспериментальными данными.

Таблица 5

Толиции королициоского	Предельная скорость пробития, м/с		гия, м/с
слоя/толщина подложки, мм	Численный метод	Инженерная методика	Эксперимент
5/5	512	414	-
8/6	835	895	815 - 916
8/8	1012	1031	995 - 1091
11/5	1025	1082	-

Значения предельных скоростей пробития преград

Выводы. 1. Получены аналитические формулы для предельной скорости пробития двухслойных керамико-металлических преград, учитывающие структурные характеристики и физико-механические свойства материалов ударника и преграды.

2. С помощью полученных формул выполнено исследование баллистической стойкости преград и показана возможность оптимизации их структуры. Полученные результаты хорошо согласуются с известными экспериментальными данными.

3. В диапазоне поверхностных плотностей преграды q = 30...50 кг/м² для разных материалов подложек определены оптимальные относительные толщины $\overline{h}_{\text{опт}}$ керамических слоев, обеспечивающие максимальное значение предельных скоростей пробития. Отмечено, что значения $\overline{h}_{\text{опт}}$ слабо зависят от q и

определяются свойствами материалов подложек. Полученные значения $h_{\text{опт}}$ распределяются следующим образом: алюминиевый сплав $\overline{h}_{\text{опт}} = 0,6-0,65$; титановый сплав $\overline{h}_{\text{опт}} = 0,73-0,74$; сталь $\overline{h}_{\text{опт}} = 0,82-0,84$.

ЛИТЕРАТУРА

1. *Кобылкин И.Ф., Селиванов В.В.* Материалы и структуры легкой бронезащиты. М.: Издво МГТУ им. Н.Э. Баумана, 2014. 191 с.

2. Кобылкин И.Ф., Горбатенко А.А. Феноменологическая модель пробивания керамических преград // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2016. № 6. С. 62–73. DOI: 10.18698/0236-3941-2016-6-62-73

3. *Ben-Dor G., Dubinsky A., Elperin T.* High-speed penetration dynamics: engineering models and methods. Word Scientific Publ. Co., 2013. P. 589–607.

4. *Recht R.F.* High velocity impact dynamics: analytical modeling of plate penetration dynamics // Zukas A., ed. High velocity impact dynamics. New York: John Willey and Sons, 1990. P. 443–513.

5. *Reijer P.C.* Impact on ceramic faced armor. Ph. D. Thesis. Delft University of Technology. The Netherlands, 1991. P. 123–130.

6. Григорян В.А., Кобылкин И.Ф., Маринин В.М., Чистяков Е.Н. Материалы и структуры для локального и индивидуального бронирования. М.: РадиоСофт, 2008. 406 с.

7. *Бхатнагар А., ред.* Легкие баллистические материалы / пер. с англ.; под ред. С.Л. Баженова. М.: Техносфера, 2011. 392 с.

8. *Walker J.D.* Ballistic limit of fabrics with resin // Proc. 19th Int. Symp. on Ballistics. Interlaken, 2001. P. 1409–1414.

9. *Ben-Dor G., Dubinsky A., Elperin T.* Improved Florence model and optimization of twocomponent armor against single impact or two impacts // Composite Structures. 2009. Vol. 88. No. 1. P. 158–165. DOI: 10.1016/j.compstruct.2008.02.015

URL: https://www.sciencedirect.com/science/article/pii/S0263822308000524

Кобылкин Иван Федорович — д-р техн. наук, профессор кафедры «Высокоточные летательные аппараты» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Горбатенко Анастасия Анатольевна — аспирантка кафедры «Высокоточные летательные аппараты» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Просьба ссылаться на эту статью следующим образом:

Кобылкин И.Ф., Горбатенко А.А. Аналитическая модель пробития керамикометаллических защитных преград и их оптимизация // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2018. № 2. С. 17–30. DOI: 10.18698/0236-3941-2018-2-17-30

ANALYTICAL MODEL OF TROUGH-PENETRATION OF CERAMIC-METAL PROTECTIVE BARRIERS AND OPTIMIZATION OF SUCH BARRIERS

I.F. Kobylkin A.A. Gorbatenko kobylkin_ivan@mail.ru selenta92@mail.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
The article suggests analytical formulas for calculation of penetration speed limit value for a double-layer ceramic- metal protective barrier. Structural and mechanical cha- racteristics of barrier and penetrator materials are taken into consideration. The paper provides the study of such barriers ballistic resistance using the formulas obtained and demonstrates the possibility of such barriers struc- ture optimization. The results of the study correspond to experimental data. The optimum thickness of ceramic layers for barriers with surface densities values within	Penetration, double-layer barriers, ceramics, penetration speed limit, optimization
range 3050 kg/m^2 are identified. The article shows that obtained values of thickness have little dependence of barrier surface densities. This values primarily depend on barrier base materials densities	Received 07.11.2016 © BMSTU, 2018

REFERENCES

[1] Kobylkin I.F., Selivanov V.V. Materialy i struktury legkoy bronezashchity [Materials and structures for lightweight armor protection]. Moscow, Bauman MSTU Publ., 2014. 191 p.

[2] Kobylkin I.F., Gorbatenko A.A. Phenomenological model of perforation ceramic plates. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.* [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2016, no. 6, pp. 62–73 (in Russ.). DOI: 10.18698/0236-3941-2016-6-62-73

[3] Ben-Dor G., Dubinsky A., Elperin T. High-Speed penetration dynamics: engineering models and methods. Word Scientific Publ. Co., 2013. P. 589–607.

[4] Recht R.F. High velocity impact dynamics: analytical modeling of plate penetration dynamics. In: Zukas A., ed. High velocity impact dynamics. New York, John Willey and Sons, 1990. P. 443–513.

[5] Reijer P.C. Impact on ceramic faced armor. Ph. D. Thesis. Delft University of Technology. The Netherlands, 1991. P. 123–130.

[6] Grigoryan V.A., Kobylkin I.F., Marinin V.M., Chistyakov E.N. Materialy i struktury dlya lokal'nogo i individual'nogo bronirovaniya [Materials and structures for local and individual armoring]. Moscow, RadioSoft Publ., 2008. 406 p.

[7] Bhatnagar A., ed. Lightweight ballistic composites. Woodhead Publishing, 2006. 448 p.

[8] Walker J.D. Ballistic limit of fabrics with resin. *Proc. 19th Int. Symp. on Ballistics*, Interlaken, 2001. P. 1409–1414.

[9] Ben-Dor G., Dubinsky A., Elperin T. Improved Florence model and optimization of twocomponent armor against single impact or two impacts. *Composite Structures*, 2009, vol. 88, no. 1, pp. 158–165. DOI: 10.1016/j.compstruct.2008.02.015

Available at: https://www.sciencedirect.com/science/article/pii/S0263822308000524

Kobylkin I.F. — Dr. Sc. (Eng.), Professor, Department of High-Precision Airborne Devices, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Gorbatenko A.A. — post-graduate student, Department of High-Precision Airborne Devices, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Please cite this article in English as:

Kobylkin I.F., Gorbatenko A.A. Analytical Model of Trough-Penetration of Ceramic-Metal Protective Barriers and Optimization of Such Barriers. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.* [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2018, no. 2, pp. 17–30 (in Russ.). DOI: 10.18698/0236-3941-2018-2-17-30

В Издательстве МГТУ им. Н.Э. Баумана вышло в свет 2-е издание учебного пособия автора **А.Н. Полилова**

«Экспериментальная механика композитов»

Изложены научные основы экспериментальных исследований композитных материалов-конструкций. Обоснованы экспериментальные методы определения полного набора упругих и прочностных констант ортотропных композитов. Приведены методы исследования ползучести и высокоскоростного деформирования композитов, модели и критерии разрушения анизотропных волокнистых композитов с полимерной матрицей. Предложены энергетические критерии развития расслоений и расщеплений в композитах. Рассмотрено влияние концентрации напряжений на прочность композитных деталей. Представлены оригинальные модели разрушения композитов, а также расчетные методы, отличающиеся от стандартных.

По вопросам приобретения обращайтесь:

105005, Москва, 2-я Бауманская ул., д. 5, стр. 1 +7 (499) 263-60-45 press@bmstu.ru www.baumanpress.ru