УДК 621.735.016.2

МОДЕЛИРОВАНИЕ КВАЗИСТАТИЧЕСКОЙ ПЕРЕМЕННОЙ ЖЕСТКОСТИ ШАРИКОПОДШИПНИКОВ ШПИНДЕЛЬНЫХ УЗЛОВ МЕТАЛЛОРЕЖУЩИХ СТАНКОВ

А.В. Фролов	Frolov@Frolov.moscow
С.В. Смирнов	Strapdownsystems@mail.ru

АО «Центральный научно-исследовательский институт автоматики и гидравлики», Москва, Российская Федерация

Точность обработки металлорежущего станка напря- мую зависит от точности вращения шпиндельного узла, которая определяется жесткостью его опор — подшип- ников. Подшипник — это сложное механическое изде- лие, жесткость которого как в радиальном, так и в осе- вом направлениях не является постоянной величиной, а зависит от многих факторов: чисто геометрических, условий работы, начальных сидовых и тепловых нагру-
мую зависит от точности вращения шпиндельного узла, которая определяется жесткостью его опор — подшип- ников. Подшипник — это сложное механическое изде- лие, жесткость которого как в радиальном, так и в осе- вом направлениях не является постоянной величиной, а зависит от многих факторов: чисто геометрических, условий работы, начальных сидовых и тепловых нагру-
которая определяется жесткостью его опор — подшип- ников. Подшипник — это сложное механическое изде- лие, жесткость которого как в радиальном, так и в осе- вом направлениях не является постоянной величиной, а зависит от многих факторов: чисто геометрических, условий работы начальных сидовых и тепловых нагру-
ников. Подшипник — это сложное механическое изде- лие, жесткость которого как в радиальном, так и в осе- вом направлениях не является постоянной величиной, а зависит от многих факторов: чисто геометрических, условий работы, начальных сидовых и тепловых нагру-
лие, жесткость которого как в радиальном, так и в осе- вом направлениях не является постоянной величиной, а зависит от многих факторов: чисто геометрических, условий работы, начальных силовых и тепловых нагру-
вом направлениях не является постоянной величиной, а зависит от многих факторов: чисто геометрических, услових нагру-
зависит от многих факторов: чисто геометрических,
условий работы, начальных силовых и тепловых нагру-
yerobin proof bi, na iarbibix anobbix n tennobbix narpy
зок. Расчет переменной жесткости требует построения
соответствующей модели, учитывающей существующие
нагрузки и условия. Приведена методика расчета пере-
менной жесткости радиально-упорных шарикопод-
шипников качения как наиболее распространенных в
шпиндельных узлах. Модель переменной жесткости
учитывает распределение внешней нагрузки между
телами качения в функции изменения угла контакта тел
качения и колец подшипника и обеспечивает достаточ-
ную точность для большинства задач по определению
жесткости шпиндельного узла. Сравнение приведенной
модели с моделями, предлагаемыми другими авторами,
подтвердило ее адекватность. Данная модель перемен-
ной жесткости подшипников используется для исследо-
вательских и конструкторских расчетов, не требующих
больших временных затрат, и апробирована в расчете
смещений переднего конца шпинделя эксперименталь- Поступила в редакцию 20.06.2018
ного шпиндельного узла © МГТУ им. Н.Э. Баумана, 2018

Введение. Применение шарикоподшипников, использующих энергию вращения, можно наблюдать во всех видах машин и механизмов, в том числе и в металлообрабатывающих станках.

В станке основным элементом, обеспечивающим преобразование необходимой энергии, подаваемой в зону резания при формообразовании детали требуемой точности, является шпиндельный узел [1]. Жесткость шпиндельного узла (ШУ) в подавляющем большинстве случаев является основной составляющей баланса точности и качества механической обработки [2]. Поэтому к ШУ предъявляется ряд жестких требований, в том числе одно из основных — точность вращения шпинделя при изменяющихся режимах работы [3]. Высокая точность вращения шпинделя в узле в первую очередь зависит от точности опор, т. е. подшипников.

Авторы также считают, что «следует различать жесткость подшипников и жесткость опор. Во втором случае наряду с контактной жесткостью между телами качения и беговыми дорожками (подшипников) необходимо учитывать и контактную жесткость в местах посадки их на вал и в корпус» [4].

Наибольшее влияние на точность обработки оказывают смещения переднего конца шпинделя, поэтому необходимо ограничивать силовые, тепловые и вибрационные (динамические) нагрузки на шпиндель.

Обзор моделей подшипников. Все существующие модели подшипников, согласно работе [5], можно условно разделить на группы по следующим признакам:

• статические, квазистатические (стационарное движение с невысокими скоростями), динамические модели — по характеру движения элементов подшипника;

• консервативные и неконсервативные (диссипативные) модели — по учету потерь на трение;

• идеальные и неидеальные — по характеристикам геометрии подшипника.

Основные уравнения для задачи по определению упругих характеристик смещений или деформаций для отдельного подшипника были выведены Джонсом [6] и Де Мюлем [7] с соавторами, в уравнениях использована теория контакта Герца [8] между телами качения и кольцами подшипника [9]. Все подходы к моделированию подшипника в основном базируются на теории контакта Герца [8] и теории эллиптического контакта [10].

На данный момент разработаны различные численно решенные аналитические модели подшипника, учитывающие различную проблематику: распределение нагрузок [11, 12]; применение матриц жесткости [13]; углов контакта между телами качения и кольцами [14]; трения и тепловых деформаций [15, 16].

Наиболее распространенные модели подшипников, учитывающие разные факторы воздействия на вращающийся подшипник, можно найти в работах [11, 17, 18]. В работах [5, 19] созданы аналитические модели подшипников, основанные на раздельном решении упругой, кинематической и трибологических задачах, и ряд динамических моделей, описывающих нестационарное поведение подшипников.

Сложность взаимосвязанных физических процессов, протекающих в ШУ, показана в работах [5, 11, 18–21], при этом «определение наиболее значимых связей требует неформального анализа» [9].

В предлагаемой модели примем ряд упрощений, но понимая и подразумевая, что при использовании подшипника на высокоскоростном режиме центробежные и гироскопические эффекты, воздействующие на тела вращения в нем, изменяют его жесткость [21]. Такие факторы учитываться не будут. Часто для

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2018. № 6

расчета работающего ШУ достаточно выбрать модель подшипника, способную учитывать распределение внешней нагрузки между телами качения в функции угла поворота, поскольку чем точнее найдено распределение внешних нагрузок, особенно нагрузки на наиболее нагруженное тело качения, тем точнее метод расчета подшипника [22].

Полученные результаты расчета жесткости подшипников сравнивают с результатами расчета подшипников и полученными экспериментальными данными из работ [11, 23–27] для подтверждения работоспособности предложенной методики, поскольку жесткость подшипников нельзя измерить напрямую [28].

В качестве объекта исследования будем использовать радиально-упорные шарикоподшипники качения, поскольку такие подшипники наиболее востребованы в станках ввиду подходящей жесткости, малого коэффициента трения, долгого периода службы и высокого отношения цена/качество [29].

К шарикоподшипнику с нулевым радиальным зазором приложена радиальная нагрузка F_r в плоскости, проходящей через центры шариков, и осевая нагрузка F_a (преднатяг), линия действия которой совпадает с осью подшипника. Обычно кроме радиальной и осевой нагрузки на шарикоподшипник действует момент, вектор которого перпендикулярен оси подшипника. Относительное смещение колец состоит из осевой δ_a и радиальной δ_r составляющих, а также угла поворота из-за перекоса колец.

Существует аналитическое решение задачи нахождения упругих перемещений колец радиально-упорного шарикоподшипника при комбинированном нагружении [22]. В данном решении перекосом колец подшипника пренебрегают, считая его малым, тогда решение сводится к двум уравнениям относительно переменных:

$$\xi_a = \delta_a / D_w \zeta; \ \xi_r = \delta_r / D_w \zeta \,, \tag{1}$$

где $\xi_{a(r)}$ — безразмерное относительное осевое (радиальное) упругое смещение колец подшипника; $\delta_{a(r)}$ — упругое относительное осевое (радиальное) смещение колец; D_w — диаметр тела качения; ζ — безразмерная величина, определяемая как

$$\zeta = \zeta_{\rm H} + \zeta_{\rm B} - 1 = r_{\rm H} / D_{\rm w} + r_{\rm B} / D_{\rm w} - 1.$$
⁽²⁾

Здесь $\zeta_{H(B)}$ — развал дорожки качения наружного (внутреннего) кольца; $r_{H(B)}$ — радиус выемки дорожки качения наружного (внутреннего) кольца (рис. 1).

Радиальная жесткость радиально-упорного шарикоподшипника напрямую зависит от постоянно действующей осевой силы преднатяга F_{Ω} . Осевая жесткость подшипника взаимосвязана с его радиальной жесткостью. Начальную радиальную жесткость радиально-упорному шарикоподшипнику обеспечивает начальная осевая сила. Отдельный подшипник, находящийся в равновесном состоянии, с приложенной к нему радиальной силой, линия действия которой проходит через центр тел качения, воздействует на осевую силу через линию контакта шариков и колец. Линия контакта имеет определенный угол

Моделирование квазистатической переменной жесткости шарикоподшипников...

Рис. 1. Схема контакта шарика в подшипнике с дорожками качения колец: *a* — в ненагруженном беззазорном радиально-упорном шарикоподшипнике; *б* — при изменении угла контакта после приложения осевой силы; *в* — после приложения сил в осевом и радиальном направлениях

наклона к оси вращения, и этот угол постоянно меняется в зависимости от осевой и радиальной нагрузок на подшипник. Такой механизм взаимодействия и является нелинейной характеристикой жесткости радиально-упорного шарикоподшипника с жесткими кольцами и упругими телами качения.

В разрабатываемой модели подшипника примем следующие допущения: не учитывается влияние центробежных сил; не учитывается влияние гироскопического эффекта от вращения шариков вокруг своей оси; не учитывается влияние гидродинамической пленки между телами вращения и кольцами подшипника.

Примем, что в модели подшипника отсутствует радиальный и осевой зазор и весь комплект тел вращения находится под нагрузкой. Кроме того, считаем собственную жесткость колец подшипника много большей относительно жесткости тел вращения и в расчетах не учитываем.

Осевая сила определяет наличие или отсутствие радиального зазора в подшипнике и загруженность имеющихся тел качения. Определим влияние осевой силы на угол контакта тела качения с кольцами подшипника при малой скорости вращения или в неподвижном состоянии.

Определение угла контакта шариков с дорожками качения при действии осевой нагрузки. На рис. 1, *а* показан контакт шарика с дорожкой качения в ненагруженном радиально-упорном шарикоподшипнике с выбранным осевым зазором.

На рис. 1, δ показан контакт шарика с дорожками качения колец подшипника после приложения осевой нагрузки к нижнему кольцу. Нижнее кольцо под действием приложенной к нему силы F_a переместится на расстояние δ_{Ω} . При этом центр кривизны дорожки качения внутреннего кольца 1 переместится в точку 3. Осевое смещение кольца является составляющей нормального смещения за счет упругих деформаций в зонах контакта вдоль линии давления, проходящей через центры кривизн смещенных колец 2 и 3. Первоначальное расстояние r_m между центрами кривизн колец подшипника и дорожек качения увеличится до

$$r = r_{\rm H} + r_{\rm B} + \delta_{\rm H} + \delta_{\rm B} - D_{\rm W}, \qquad (3)$$

где $r_{\rm H\,(B)}$ — радиус дорожки качения наружного (внутреннего) кольца; $\delta_{\rm H\,(B)}$ — сближение шарика и наружного (внутреннего) кольца.

Из рис. 1, а следует, что

$$r_m = \zeta D_w, \tag{4}$$

где ζ определено в выражении (2).

Обозначая $\delta_{\rm H} + \delta_{\rm B}$ через δ (см. рис. 1, δ) и вычитая из обеих частей равенства (3) соответствующие части равенства (4), получаем

$$\delta = r - r_m, \tag{5}$$

при этом $r = \sqrt{(r_m \cos \alpha_0)^2 + (\delta_\Omega + r_m \sin \alpha_0)^2}$, где δ_Ω (см. рис. 1, 6) — осевое упругое смещение от действия осевой силы $F_a = F_\Omega$ (преднатяг) при нулевом осевом зазоре. Именно δ_Ω входит в уравнение (1) для определения безразмерного осевого смещения ξ_a при действии осевой силы преднатяга.

При воздействии на подшипник осевой силы F_a меняется номинальный угол контакта α_0 шариков с кольцами, поэтому необходимо найти новый угол контакта α_0 от действия этой силы. Если в качестве осевой нагрузки F_a принята сила, отличная от силы преднатяга F_{Ω} , то необходимо представлять осевую силу F_a в виде суммы (разности) силы преднатяга F_{Ω} и осевой рабочей нагрузки $F_{a \text{ р.н}}$ в зависимости от нагружения (разгрузки) подшипника.

Угол α_{Ω} будем искать по формуле [22]

$$\alpha_{\Omega} = \alpha_0 + \Delta \alpha, \tag{6}$$

где α₀ — номинальный угол контакта; Δα — изменение номинального угла от действия силы преднатяга,

$$\Delta \alpha = \frac{3}{2} \frac{\sin 2\alpha_0}{6 + \cos^2 \alpha_0} \left[\sqrt{1 + \frac{2}{3} \frac{6 + \cos^2 \alpha_0}{\sin^2 \alpha_0}} \left(\frac{F_a}{C_\Omega \sin \alpha_0} \right)^{2/3} - 1 \right].$$
 (7)

Здесь *F_a* — осевая сила преднатяга; *C*_Ω — силовая характеристика подшипника, определяющая контактно-упругую способность воспринимать нагрузки.

Параметр C_{Ω} важен и для каждого подшипника может быть вычислен отдельно [22]. В общем виде силовая характеристика C_{Ω} , связанная с коэффициентами $C_{\text{H(B)}}$, определяется зависимостью

$$C_{\Omega} = z \left(\frac{\zeta}{C_{\rm\scriptscriptstyle B} + C_{\rm\scriptscriptstyle H}}\right)^{3/2} D_w^2,$$

где *z* — число тел качения в подшипнике;

$$C_{\rm H(B)} = \Theta \frac{2K}{(\pi\mu)_{\rm H(B)}} \sqrt[3]{D_w \sum \rho_{\rm H(B)}}$$
(8)

— силовая характеристика наружного (внутреннего) кольца подшипника.

Здесь Θ — коэффициент, учитывающий материал контактирующих тел; $2K/(\pi\mu)_{H(B)}$ — табличный коэффициент [22, 30], зависящий от разности кривизн соз $\tau_{H(B)}$ для наружного (внутреннего) кольца (соз $\tau_{H(B)}$ — определяется одновременно с суммой $\Sigma \rho$ радиусов кривизн соприкасающихся тел качения и колец подшипника); $\Sigma \rho_{H(B)}$ — сумма кривизн соприкосновения тела качения с наружным (внутренним) кольцом.

Если $(D_w/D_0)\cos\alpha_0$ обозначить через θ , то формулы, входящие в (8), для определения суммы и разности кривизн контакта тела вращения с кольцами подшипника примут следующий вид:

$$\sum \rho_{\rm B} = \frac{1}{D_{\rm w}} \left(4 - \frac{1}{\zeta_{\rm B}} + \frac{2\theta}{1 - \theta} \right);$$
$$\cos \tau_{\rm B} = \left(\frac{1}{\zeta_{\rm B}} + \frac{2\theta}{1 - \theta} \right) \left(4 - \frac{1}{\zeta_{\rm B}} + \frac{2\theta}{1 - \theta} \right)^{-1}$$

при точечном контакте шарика с внутренним кольцом;

$$\sum \rho_{\rm H} = \frac{1}{D_{\rm w}} \left(4 - \frac{1}{\zeta_{\rm H}} + \frac{2\theta}{1 - \theta} \right);$$
$$\cos \tau_{\rm H} = \left(\frac{1}{\zeta_{\rm H}} + \frac{2\theta}{1 - \theta} \right) \left(4 - \frac{1}{\zeta_{\rm H}} + \frac{2\theta}{1 - \theta} \right)^{-1}$$

— при точечном контакте шарика с наружным кольцом.

Коэффициент Θ , входящий в формулу (8), определяется по соотношению

$$\Theta = \frac{3}{2} \sqrt[3]{\frac{1}{3} \left(\frac{1-\mu^2}{E}\right)^2},$$

где *E* — модуль упругости тела качения и кольца при контакте; µ — коэффициент Пуассона для тела качения и кольца при контакте.

Аналитическое решение задачи для радиально-упорного подшипника при воздействии осевой и радиальной силы. На рис. 1, *в* показано изменение угла контакта шариков и колец подшипника, когда к действию осевой силы F_a на внутреннее кольцо подшипника добавляется действие радиальной нагрузки F_r . Центр кривизны внутреннего кольца — точка 3, переместится в точку 4 на расстояние δ_r . Угол контакта α между кольцами и шариком изменится на α_r .

Представим безразмерное относительное упругое осевое смещение ξ_a в виде разности двух смещений, первое из которых ξ_{Ω} вызывается осевой нагрузкой F_a , действующей на подшипник при нулевой радиальной силе F_r , а второе смещение ξ_{ar} является поправкой к первому, вносимой фактически действующей радиальной нагрузкой F_r :

А.В. Фролов, С.В. Смирнов

$$\xi_a = \cos \alpha_0 \left(tg \alpha_\Omega - tg \alpha_0 \right) - \xi_{ar}, \qquad (9)$$

где слагаемое $\cos \alpha_0 (tg\alpha_{\Omega} - tg\alpha_0)$ — безразмерное осевое перемещение внутреннего кольца подшипника ξ_{Ω} от действия осевой силы преднатяга F_{Ω} .

При полной загрузке всех шариков в подшипнике для определения неизвестных безразмерных перемещений ξ_r и ξ_{ar} необходимо решить систему уравнений [6]

$$a_{10} + a_{11}\xi_{ar} + a_{12}\xi_{ar}^2 + b_{12}\xi_r^2 = 0;$$

$$a_{20} + b_{21}\xi_r + a_{23}\xi_{ar}\xi_r = 0.$$
(10)

Уравнения (10) получены с использованием разложения уравнений

$$\frac{1}{z}\sum_{i=0}^{z-1} X_i^{3/2} \frac{M}{L_i^{1/2}} - \frac{F_a}{C_{\Omega}} = 0; \quad \frac{1}{z}\sum_{i=0}^{z-1} X_i^{3/2} \frac{M}{L_i^{1/2}} \cos(i\gamma) - \frac{F_r}{C_{\Omega}} = 0$$

в двойные ряды Тейлора по малым параметрам ξ_{*a*} и ξ_{*ar*}. Коэффициенты в системе уравнений (10) определяются из соотношений:

$$\begin{split} a_{10} &= X^{3/2} \frac{M}{L^{1/2}} - \frac{F_a}{C_{\Omega}}; \quad a_{11} = -\frac{3}{2} X^{1/2} \frac{M^2}{L} \left(1 + \frac{2}{3} X \frac{\eta}{L^{1/2}} \right); \\ a_{12} &= \frac{3}{8} X^{-1/2} \frac{M^3}{L^{3/2}} \left(1 + 6\chi X \frac{\eta^2}{L^{1/2}} \right); \quad a_{20} = -\frac{F_a}{C_{\Omega}}; \\ a_{23} &= -\frac{3}{8} X^{-1/2} \frac{MN^2}{L^{3/2}} \left(1 + 2\chi X \frac{\eta^{-2} - 2}{L^{1/2}} \right); \quad b_{12} = -\frac{a_{23}}{2}; \\ b_{21} &= \frac{3}{4} X^{1/2} \frac{M^2}{L} \left(1 + \frac{2}{3} X \frac{\eta^{-2}}{L^{1/2}} \right), \end{split}$$

где

$$M = \cos \alpha_0 \text{tg} \,\alpha_\Omega; \ L = \left(\cos \alpha_0 / \cos \alpha_\Omega\right)^2; \ X = L^{1/2} - 1; \ \eta = N / M;$$
$$\chi = 1 - 2X / 3L^{1/2}; \ N = \cos \alpha_0.$$

Если к системе уравнений (10) применить метод последовательных приближений, получим систему относительно малых величин ξ_r и ξ_{ar}:

$$\xi_{ar}^{k+1} = \frac{a_{11}}{2a_{12}} \left[\sqrt{1 - 4 \frac{\left(a_{10} + b_{12} \left(\xi_r^{k+1}\right)^2\right) a_{12}}{a_{11}^2}} \right];$$
(11)
$$\xi_r^{k+1} = -a_{20} / \left(b_{21} + a_{23} \xi_{ar}^k\right),$$

где k = 0, 1, 2, ..., n, при этом $\xi_{ar}^0 = 0$.

Значения, найденные по формуле (11), подразумевают условие полной загрузки всех шариков в подшипнике. Расчеты показывают, что при неблагопри-

ятных условиях (малом угле α_0 и больших силах F_a и F_r) решение имеет удовлетворительную точность уже при n = 4. Определив ξ_{ar} по формуле (9), найдем ξ_a . Перемещение колец находят с учетом выражений (1) и (2). Смещения кольца от действия осевой нагрузки F_a определяем по формуле $\delta_a = \xi_a(\zeta D_w)$, от действия радиальной нагрузки F_r — по формуле $\delta_r = \xi_r(\zeta D_w)$.

Используя найденные осевые и радиальные смещения, определяем осевую *j_a* и радиальную *j_r* жесткости подшипника:

$$j_{a} = \frac{F_{a}}{\delta_{a} \cdot 10^{3}};$$

$$j_{r} = \frac{F_{r}}{\delta_{r} \cdot 10^{3}}.$$
(12)

Оценка точности разработанной модели. Существует ряд экспериментальных работ, проведенных для анализа жесткости подшипников. Некоторые из них наиболее часто используются в качестве эталона для подтверждения соответствия разработанных моделей экспериментальным данным [24]. Два типа шарикоподшипников были рассчитаны различными методами: SKF ALS28ABP, SKF EEB3 2Z [25–28]. Расчеты жесткости двух типов подшипников приведены на графиках (рис. 2–4) в сравнении с исследованиями других авторов и их подтвержденными данными [23–27]. Данные для расчета жесткости указаны в таблице. Механические свойства стали и керамики следующие: модули упругости 2,1·10⁵ и 0,7·10⁵ МПа; коэффициент Пуассона одинаковый, 0,33.

В работе [11] рассчитаны шпиндельные подшипники FAG с керамическими телами качения: подшипник для передней опоры шпинделя XCS71914E и подшипник для задней опоры шпинделя XCS71911E. На рис. 5 и 6 показаны результаты расчета этих подшипников по предложенной методике в сравнении с результатами работы [11].

Рис. 2. Зависимость осевой жесткости радиально-упорного шарикоподшипника SKF ALS28ABP от осевой нагрузки:

1 — методика Gargiulo [24] (эксперимент); 2, 3, 4 — методики Guo; Sheng (300 и 9000 об/мин) (расчет); 5 — предлагаемая методика

Рис. 3. Зависимость осевой жесткости радиально-упорного шарикоподшипника SKF EEB3 2Z от осевой нагрузки:

1 — методика Guo (расчет); 2, 3 — методика Kraus [27] (эксперимент), то же при скорости вращения 1000 об/мин (расчет); 4, 5 — методика Sheng (при скорости вращения 300 и 10 000 об/мин, расчет); 6 — предлагаемая методика

Рис. 4. Зависимость радиальной жесткости радиально-упорного шарикоподшипника SKF EEB3 2Z от осевой нагрузки:

1 — методика Gargiulo; 2, 3 — методика Kraus [27] (эксперимент), то же при скорости вращения
 1000 об/мин (расчет); 4 — методика Sheng (при скорости вращения 10 000 об/мин, расчет);
 5 — методика Guo; 6 — предлагаемая методика

Параметры подшипников для расчета жесткости [26, 27]

Параметр	SKF ALS28ABP	SKF EEB3-2Z	FAG HC71911	FAG HC71914
Тип полшипника	Радиально-	Радиальный	Шпиндельный	
типподшинника	упорный		радиально-упорный	
Материал тел качения	Сталь		Керамика	
Номинальный угол	20°	0	25°	25°
контакта	20	0	23	23
Число тел качения	16	7	28	32
Диаметр тела качения, мм	22,23	3,969	4,75	6,1

			Onon	iunue muonugo
Параметр	SKF ALS28ABP	SKF EEB3-2Z	FAG HC71911	FAG HC71914
Радиус дорожки качения наружного кольца, мм	11,56	2,064	2,47	3,172
Радиус дорожки каче- ния внутреннего кольца, мм	11,56	2,064	2,47	3,172
Ширина подшипника, мм	28,60	7,144	13	16
Диаметр дорожки внешнего кольца под- шипника, мм	138,5	19,72	72,29	91,15
Диаметр дорожки внутреннего кольца подшипника, мм	111,5	11,78	62,75	78,9
Наружный диаметр подшипника, мм	165	22,225	80	100
Внутренний диаметр подшипника, мм	89,5	9,525	55	70

Моделирование квазистатической переменной жесткости шарикоподшипников...

Рис. 5. Зависимость осевой жесткости шпиндельных радиально-упорных шарикоподшипников FAG XCS71914E (№ 1) и XCS71914E (№ 5) от осевой нагрузки:

1 и 2 — методика Сао, подшипники № 1 и № 5; 3
и4 — предлагаемая методика, подшипники № 1 и № 5

На рис. 2–6 видно, что результаты вычислений по предложенной методике хорошо коррелируются с результатами других моделей, кроме модели Gargiulo, основанной на эмпирической формуле расчета жесткости. Заниженное значение осевой жесткости для подшипника SKF EEB3 2Z (см. рис. 3) в предложенной методике объясняется расчетом радиального подшипника с начальным номинальным нулевым углом контакта, а предложенная методика расчета предназначена в первую очередь для расчетов радиально-упорных подшипников с отличным от нуля начальным углом контакта. При этом расчетная радиальная жесткость показывает подтвержденные другими методиками результаты.

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2018. № 6

Окончание таблицы

Рис. 6. Зависимость радиальной жесткости шпиндельных радиально-упорных шарикоподшипников FAG XCS71914E (№ 1) и XCS71914E (№ 5) от осевой нагрузки:

1 и 2 — методика Сао, подшипники № 1 и № 5; 3 и 4 — предлагаемая методика, подшипники № 1 и № 5

Сравнение рассчитанных значений жесткостей для шпиндельных подшипников FAG XCS71914E (№ 1) и XCS71914E (№ 5) с керамическими телами качения по предложенной методике (см. рис. 5 и 6) показывает почти полное совпадение результататов в сравнении с методикой [11] для осевой жесткости. При этом полученные значения для радиальной жесткости оказываются завышенными на 30 %. Методика [11] является нелинейной, динамической и значительно более сложной, но при этом расчетные значения для осевой жесткости сходятся, а для радиальной жесткости значения достаточно близки для принятых упрощений: без учета трения и тепловых деформаций [15, 16] и других сложных физических процессов, протекающих в подшипнике [1, 2, 5, 9, 11, 12, 17–29, 31].

Заключение. Приведенные расчетные зависимости позволяют определять сближения контактирующих деталей в неподвижных шарикоподшипниках и рассчитывать их переменную жесткость, а также во вращающихся радиальных и радиально-упорных шарикоподшипниках при умеренных и тяжелых нагрузках, если частота вращения невелика [23], что относит данную методику к классу квазистатических [5, 18, 23].

Переменность жесткости подшипника и ее нелинейность основаны на действии внешних ньютоновских сил, изменяющих углы контакта между телами качения и дорожками подшипника. Указанный подход целесообразен для использования в области предварительных расчетов при конструировании ШУ или расчетов уже имеющихся узлов, поскольку требует меньших машинных затрат по сравнению с более сложными нелинейными динамическими моделями. Методика авторов была апробирована в работе [31].

Авторы статьи планируют использовать предложенную методику для исследования влияния на жесткость ШУ контактных силовых смещений, рассматривая подшипник как термодинамическую систему [21], исследуя качественные воздействия наиболее значимых связей в подшипнике на его точность [9].

ЛИТЕРАТУРА

1. Abele E., Altintas Y., Brecher C. Machine tool spindle units // CIRP Annals. 2010. Vol. 59. No. 2. P. 781–802. DOI: 10.1016/j.cirp.2010.05.002

2. *Thermo*-mechanical model of spindles / T. Holkup, H. Cao, P. Kolar, Y. Altintas, J. Zeleny // CIRP Annals. 2010. Vol. 59. No. 1. P. 365–368. DOI: 10.1016/j.cirp.2010.03.021

3. Marsh E.R. Precision spindle metrology. DEStech Publications, 2010. 165 p.

4. *Горелик И.Г.* Разработка методов расчета и повышение качества высокоскоростных шпиндельных узлов. Дисс. ... канд. техн. наук. М.: ЭНИМС, 1987. 252 с.

5. *Чернянский П.М., Схиртладзе А.Г.* Проектирование и ремонт шпиндельных узлов. М.: ИНФРА-М, 2014. 272 с.

6. Jones A.B. Analysis of stress and deflections // New departure engineering data. Vol. 1. General Motors, 1946. P. 12–24.

7. *De Mul J., Vree J., Maas D.* Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction. Part 1: General theory and application to ball bearings // Journal of Tribology. 1989. Vol. 111. No. 1. P. 142–148. DOI: 10.1115/1.3261864

8. Hert H. On the contact of elastic solids // J. Reine Angew. Math. 1881. Vol. 92. P. 156–171.

9. Зверев И.А. Многокритериальное проектирование шпиндельных узлов на опорах качения. Дисс. ... д-ра техн. наук. М.: СТАНКИН, 1997. 227 с.

10. Timoshenko G. Theory of elasticity. McGraw-Hill, 1970. 608 p.

11. *Cao Y.* Modeling of high-speed machine-tool spindle system. Ph.D. thesis. The University of British Columbia, 2006. 140 p.

12. Adams G.G., Nosonovsky M. Contact modelling—forces // Tribol. Int. 2000. Vol. 33. No. 5-6. P. 431-442. DOI: 10.1016/S0301-679X(00)00063-3

13. *Hernot X.*, *Sarto M.*, *Guillot J.* Calculation of the stiffness matrix of angular contact ball bearings by using the analytical approach // ASME J. Mech. Des. 2000. Vol. 122. No. 1. P. 83–80. DOI: 10.1115/1.533548

14. *Kurvinen E., Sopanen J., Mikkola A.* Ball bearing model performance on various sized rotors with and without centrifugal and gyroscopic forces // Mech. Mach. Theory. 2015. Vol. 90. P. 240–260. DOI: 10.1016/j.mechmachtheory.2015.03.017

15. *Holkup T., Holy S.* Complex modelling of spindle rolling bearings // Journal of Machine Engineering. 2006. Vol. 6. No. 3. P. 48–61.

16. *Study* on the influence of thermal characteristics of rolling bearings and spindle resulted in condition of improper assembly / X. Li, Yi. Lu, K. Yan, J. Liu, J. Hong // Applied Thermal Engineering. 2017. Vol. 114. P. 221–233. DOI: 10.1016/j.applthermaleng.2016.11.194

17. *Holkup T., Kolar P.* Influence of thermo-mechanical conditions of rolling bearings on the dynamics of machine tool spindles. MATAR PRAHA 2008. Part 1: Drives & Control, Design, Models & Simulation. 2008. P. 141–146.

18. Harris T.A. Rolling bearing analysis. CRC Press, 2006. 760 p.

19. Зверев И.А., Аверьянова И.О. Комплексная математическая модель высокоскоростных шпиндельных узлов на опорах качения // СТИН. 1995. № 1. С. 7–9.

20. *Сегида А.П.* Расчет и исследование температурных полей и температурных деформаций металлорежущих станков. Дисс. ... канд. техн. наук. М.: ЭНИМС, 1984. 196 с.

21. *Дмитриев Б.М.* Исследование причин изменения точности станка и разработка метода стабилизации точности на принципах саморегулирования. Дисс. ... д-ра техн. наук. М.: Изд-во МГТУ им. Н.Э. Баумана, 2007. 218 с.

22. Ковалев М.П., Народецкий М.З. Расчет высокоточных шарикоподшипников. М.: Машиностроение, 1975. 280 с.

23. *Sheng X., Li B., Wu Zh., Li H.* Calculation of ball bearing speed-varying stiffness // Mech. Mach. Theory. 2014. Vol. 81. P. 166–180. DOI: 10.1016/j.mechmachtheory.2014.07.003

24. *Gargiulo Jr.* A simple way to estimate bearing stiffness // Machine Design. 1980. Vol. 52. No. 17. P. 107–110.

25. *Guo Y., Parker R.G.* Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model // Mech. Mach. Theory. 2012. Vol. 51. P. 32–45. DOI: 10.1016/j.mechmachtheory.2011.12.006

26. *Zhang J., Fang B., Zhu Yo., Hong J.* A comparative study and stiffness analysis of angular contact ball bearings under different preload mechanisms // Mech. Mach. Theory. 2017. Vol. 115. P. 1–17. DOI: 10.1016/j.mechmachtheory.2017.03.012

27. *Kraus J., Blech J., Braun S.* In situ determination of rolling bearing stiffness and damping by modal analysis // J. Vib. Acoust. Stress. Reliab. Des. 1987. Vol. 109. No. 3. P. 235–240. DOI: 10.1115/1.3269426

28. Zahedi A., Movahhedy M.R. Thermo-mechanical modeling of high speed spindles // Scientia Iranica. 2012. Vol. 19. No. 2. P. 282–293. DOI: 10.1016/j.scient.2012.01.004

29. *Chi-Wei Lin, Yang-Kuei Lin, Chih-Hsing Chu.* Dynamic models and design of spindle-bearing systems of machine tools: a review // International Journal of Precision Engineering and Manufacturing. 2013. Vol. 14. No. 3. P. 513–521. DOI: 10.1007/s12541-013-0070-6

30. Перель Л.Я., Филатов А.А. Подшипники качения: расчет, проектирование и обслуживание опор. М.: Машиностроение, 1992. 608 с.

31. *Фролов А.В.* Повышение точности шпиндельных узлов прецизионных станков методами термоупругого моделирования при заданной их теплоустойчивости. Дисс. ... канд. техн. наук. М.: МГТУ им. Н.Э. Баумана, 2007. 284 с.

Фролов Александр Владимирович — канд. техн. наук, начальник лаборатории АО «Центральный научно-исследовательский институт автоматики и гидравлики» (Российская Федерация, 127018, Москва, ул. Советской Армии, д. 5).

Смирнов Сергей Викторович — канд. техн. наук, начальник отдела АО «Центральный научно-исследовательский институт автоматики и гидравлики» (Российская Федерация, 127018, Москва, ул. Советской Армии, д. 5).

Просьба ссылаться на эту статью следующим образом:

Фролов А.В., Смирнов С.В. Моделирование квазистатической переменной жесткости шарикоподшипников шпиндельных узлов металлорежущих станков // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2018. № 6. С. 44–59. DOI: 10.18698/0236-3941-2018-6-44-59

SIMULATING VARIABLE QUASISTATIC STIFFNESS OF MACHINE TOOL SPINDLE UNIT

A.V. Frolov S.V. Smirnov Frolov@Frolov.moscow Strapdownsystems@mail.ru

JSC Central Research Institute for Automatics and Hydraulics, Moscow, Russian Federation

Abstract	Keywords
Precision of a machine tool directly depends on the rotation	Spindle unit, precision, bearing, vari-
precision of the spindle unit, which, in turn, is determined	able stiffness, stiffness computations
by the stiffness of the bearings that support it. The bearing is	
a complex mechanical device, the stiffness of which is not	
constant either radially or axially and depends on multiple	
factors, such as purely geometrical considerations, operating	
conditions, initial mechanical and thermal loads. Variable	
stiffness computation involves developing an adequate	
model that accounts for existing loads and conditions. The	
paper presents a method for computing variable stiffness of	
angular contact ball bearings, since they are the most widely	
used type in spindle units. The variable stiffness model takes	
into account the distribution of external loads between	
bearing balls via a function describing the variation of the	
contact angle between balls and bearing races. It ensures	
adequate accuracy for the majority of spindle unit stiffness	
problems. We validated our model by comparing our simu-	
lation results to experimental data and the results derived	
from models published previously. This variable bearing	
stiffness model is used for fast computations in both re-	
search and development. It was tested by computing dis-	Received 20.06.2018
placements of a spindle nose in an experimental spindle unit	© BMSTU, 2018

REFERENCES

[1] Abele E., Altintas Y., Brecher C. Machine tool spindle units. *CIRP Annals*, 2010, vol. 59, no. 2, pp. 781–802. DOI: 10.1016/j.cirp.2010.05.002

[2] Holkup T., Cao H., Kolar P., Altintas Y., Zeleny J. Thermo-mechanical model of spindles. *CIRP Annals*, 2010, vol. 59, no. 1, pp. 365–368. DOI: 10.1016/j.cirp.2010.03.021

[3] Marsh E.R. Precision spindle metrology. DEStech Publications, 2010. 165 p.

[4] Gorelik I.G. Razrabotka metodov rascheta i povyshenie kachestva vysokoskorostnykh shpindel'nykh uzlov. Diss. kand. tekh. nauk [Development of calculation method and raising efficiency of high speed spindle units. Cand. tech. sc. diss.]. Moscow, ENIMS Publ., 1987. 252 p.

[5] Chernyanskiy P.M., Skhirtladze A.G. Proektirovanie i remont shpindel'nykh uzlov [Engineering and repair of spindle units]. Moscow, INFRA-M Publ., 2014. 272 p.

[6] Jones A.B. Analysis of stress and deflections. *New departure engineering data*. Vol. 1. General Motors, 1946. Pp. 12–24.

[8] Hert H. On the contact of elastic solids. J. Reine Angew. Math., 1881, vol. 92, pp. 156-171.

[9] Zverev I.A. Mnogokriterial'noe proektirovanie shpindel'nykh uzlov na oporakh kacheniya. Diss. dok. tekh. nauk [Multicriteria engineering of spindle units on rolling-contact bearing. Doc. tech. sc. diss.]. Moscow, STANKIN Publ., 1997. 227 p.

[10] Timoshenko G. Theory of elasticity. McGraw-Hill, 1970. 608 p.

[11] Cao Y. Modeling of high-speed machine-tool spindle system. Ph.D. thesis. The University of British Columbia, 2006. 140 p.

[12] Adams G.G., Nosonovsky M. Contact modelling—forces. *Tribol. Int.* 2000, vol. 33, no. 5-6, pp. 431–442. DOI: 10.1016/S0301-679X(00)00063-3

[13] Hernot X., Sarto M., Guillot J. Calculation of the stiffness matrix of angular contact ball bearings by using the analytical approach. *ASME J. Mech. Des.*, 2000, vol. 122, no. 1, pp. 83–80. DOI: 10.1115/1.533548

[14] Kurvinen E., Sopanen J., Mikkola A. Ball bearing model performance on various sized rotors with and without centrifugal and gyroscopic forces. *Mech. Mach. Theory*, 2015, vol. 90, pp. 240–260. DOI: 10.1016/j.mechmachtheory.2015.03.017

[15] Holkup T., Holy S. Complex modelling of spindle rolling bearings. *Journal of Machine Engineering*, 2006, vol. 6, no. 3, pp. 48–61.

[16] Li X., Lu Yi, Yan Ke, Liu J., Hong J. Study on the influence of thermal characteristics of rolling bearings and spindle resulted in condition of improper assembly. *Applied Thermal Engineering*, 2017, vol. 114, pp. 221–233. DOI: 10.1016/j.applthermaleng.2016.11.194

[17] Holkup T., Kolar P. Influence of thermo-mechanical conditions of rolling bearings on the dynamics of machine tool spindles. MATAR PRAHA 2008. Part 1: Drives & Control, Design, Models & Simulation. 2008, pp. 141–146.

[18] Harris T.A. Rolling bearing analysis. CRC Press, 2006. 760 p.

[19] Zverev I.A., Aver'yanova I.O. Complex mathematical model of highspeed spindle unit on rolling-contact bearing. *STIN*, 1995, no. 1, pp. 7–9 (in Russ.).

[20] Segida A.P. Raschet i issledovanie temperaturnykh poley i temperaturnykh deformatsiy metallorezhushchikh stankov. Diss. kand. tekh. nauk [Calculation and research on temperature fields and temperature deformations of metal-cutting machines. Cand. tech. sc. diss.]. Moscow, ENIMS, 1984. 196 p.

[21] Dmitriev B.M. Issledovanie prichin izmeneniya tochnosti stanka i razrabotka metoda stabilizatsii tochnosti na printsipakh samoregulirovaniya. Diss. dok. tekh. nauk [Study on cause of change in machine accuracy and development of stabilization method based on self-regulation principles. Cand. tech. sci. diss.]. Moscow, Bauman MSTU Publ., 2007. 218 p.

[22] Kovalev M.P., Narodetskiy M.Z. Raschet vysokotochnykh sharikopodshipnikov [Calculation of high-precision ball bearings]. Moscow, Mashinostroenie Publ., 1975. 280 p.

[23] Sheng X., Li B., Wu Zh., Li H. Calculation of ball bearing speed-varying stiffness. *Mech. Mach. Theory*, 2014, vol. 81, pp. 166–180. DOI: 10.1016/j.mechmachtheory.2014.07.003

[24] Gargiulo Jr. A simple way to estimate bearing stiffness. *Machine Design*, 1980, vol. 52, no. 17, pp. 107–110.

^[7] De Mul J., Vree J., Maas D. Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction. Part 1: General theory and application to ball bearings. *Journal of Tribology*, 1989, vol. 111, no. 1, pp. 142–148. DOI: 10.1115/1.3261864

Моделирование квазистатической переменной жесткости шарикоподшипников...

[25] Guo Y., Parker R.G. Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model. *Mech. Mach. Theory*, 2012, vol. 51, pp. 32–45. DOI: 10.1016/j.mechmachtheory.2011.12.006

[26] Zhang J., Fang B., Zhu Yo., Hong J. A comparative study and stiffness analysis of angular contact ball bearings under different preload mechanisms. *Mech. Mach. Theory*, 2017, vol. 115, pp. 1–17. DOI: 10.1016/j.mechmachtheory.2017.03.012

[27] Kraus J., Blech J., Braun S. In situ determination of rolling bearing stiffness and damping by modal analysis. *J. Vib. Acoust. Stress. Reliab. Des.*, 1987, vol. 109, no. 3, pp. 235–240. DOI: 10.1115/1.3269426

[28] Zahedi A., Movahhedy M.R. Thermo-mechanical modeling of high speed spindles. *Scientia Iranica*, 2012, vol. 19, no. 2, pp. 282–293. DOI: 10.1016/j.scient.2012.01.004

[29] Chi-Wei Lin, Yang-Kuei Lin, Chih-Hsing Chu. Dynamic models and design of spindlebearing systems of machine tools: a review. *International Journal of Precision Engineering and Manufacturing*, 2013, vol. 14, no. 3, pp. 513–521. DOI: 10.1007/s12541-013-0070-6

[30] Perel' L.Ya., Filatov A.A. Podshipniki kacheniya: raschet, proektirovanie i obsluzhivanie opor [Ball bearings: calculation, engineering and supports maintainance]. Moscow, Mashinostroenie Publ., 1992. 608 p.

[31] Frolov A.V. Povyshenie tochnosti shpindel'nykh uzlov pretsizionnykh stankov metodami termouprugogo modelirovaniya pri zadannoy ikh teploustoychivosti. Diss. kand. tekhn. nauk [Raising precision of spindle units of precision machines at given thermal stability]. Moscow, Bauman MSTU Publ., 2007. 284 p.

Frolov A.V. — Cand. Sc. (Eng.), Head of Laboratory, JSC Central Research Institute for Automatics and Hydraulics (Sovetskoy Armii ul. 5, Moscow, 127018 Russian Federation).

Smirnov S.V. — Cand. Sc. (Eng.), Head of Department, JSC Central Research Institute for Automatics and Hydraulics (Sovetskoy Armii ul. 5, Moscow, 127018 Russian Federation).

Please cite this article in English as:

Frolov A.V., Smirnov S.V. Simulating Variable Quasistatic Stiffness of Machine Tool Spindle Unit. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.* [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2018, no. 6, pp. 44–59 (in Russ.). DOI: 10.18698/0236-3941-2018-6-44-59