
      

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2019. № 2  71     

UDC 519.711.2  DOI: 10.18698/0236-3941-2019-2-71-82 

THE EFFECT OF UNBALANCE MASS ON THE NECESSARY  
CONDITIONS OF THE DOUBLE-SUPPORT ROTOR  
AUTOBALANCING STABILITY  

A.N. Gorbenko1  gan0941@yandex.ru 
S.Kh. Shmelev2 shm_Novo@mail.ru 
G. Strautmanis3  guntis.strautmanis@rtu.lv 
1 Kerch State Maritime Technological University, Kerch, Republic of Crimea,  
Russian Federation 
2 Admiral Ushakov State Maritime University, Novorossiysk,  
Russian Federation 
3 Riga Technical University, Riga, Latvia 

Abstract Keywords 
The analysis of necessary conditions for autobalancing 
stability of rotor, which performs spatial oscillations, 
was carried out in this paper taking into account the 
influence of unbalance and autobalancer masses.  
It was found that the using of traditional models, 
where unbalance and autobalancer masses are 
assumed small, could lead to significant errors in the 
dynamics analysis of spatially moving rotor. The 
influence of this factor leads to the doubling of the 
critical rotational speeds spectrum. Moreover, the 
system motion between the split critical frequencies  
is unstable. There may be one or two onset areas  
of autobalancing mode motion depending on the 
dynamic rotor type, its location relative to the 
supports, the unbalance mass and other system 
parameters. It was found that rotors, that are long type 
or close to the spherical type, are the most sensitive to 
this factor. On the other hand, rotors of the short type 
are weakly sensitive. It is shown that the most 
preferred case is when the unbalance and autobalancer 
location plane passes through the common mass 
center of the composite rotor. The quantitative 
criterion is formulated for the necessity of taking into 
account (or not taking into account) the influence  
of this factor when analyzing the system dynamics 
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Introduction. The unbalance of the rotor is the main reason for the increased 
vibration of rotor type machines. This factor leads to a decrease in the 
functional properties, reliability and resource of rotary mechanisms. To 
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overcome this problem, passive-type autobalancing devices can be successfully 
used, which are able to compensate automatically the current rotor unbalance. 
However, the actual use of autobalancing devices is faced with the problem of 
their work stability. 

Autobalancing devices have been known for a long time. Studies of the rotor 
dynamics with autobalancers can be found in [1–7], etc. In the monograph [2], a 
very comprehensive review of works on the theory of autobalancing is given. 
Autobalancing of a rotor that performs spatial motion was studied in [2, 4, 5, 7] 
and others. 

In the well-known works, it is traditionally assumed that the unbalance mass 
of the rotor and compensating autobalance weights is substantially less than the 
mass of the rotor itself. This approach provides a certain simplification of the 
system mathematical model and its study. However, the analysis carried out in  
[8, 9] showed that the rotor dynamics from the autobalancing device, which 
performs spatial movement, has more complex properties, which depend on the 
mass of the unbalance and compensating autobalance weights. The qualitative 
difference is that a real unbalanced rotor with an autobalancing device exhibits 
an inertial anisotropy property, which results in splitting (doubling) of its critical 
rotational frequencies [10]. In the same paper, a criterion was formulated for the 
necessity of taking into account (or not taking into account) the influence of this 
factor when analyzing the system dynamics. 

In [11], the necessary conditions for the stability of the rotor autobalancing 
were first obtained, taking into account the influence of the unbalance magnitude 
and the mass of the autobalancer. Analytical research has shown that the 
influence of this factor is non-trivial. 

The purpose of this work is to analyze the influence of the unbalance mass 
and other system parameters on the necessary conditions for the autobalance 
stability of a double-support rotor that performs a spatial motion. Besides, the 
rotor is arbitrarily located relative to the supports. This paper is a continuation 
of the work [11]. 

Physical model and mechanical system parameters. The mechanical 
system “rotor–multi-mass autobalancer” is considered (Fig. 1). A rigid rotor with 
a mass Mr based on two elastic-viscous isotropic supports and rotates with an 
angular velocity . The rotor center of mass is located at point G. Polar Cr and 
equatorial Ar moments of inertia about its own axes characterize the inertial 
properties of the rotor in its spatial movement. The rotor disk in the general case 
can be based between both the supports and have a cantilever arrangement. 

The unbalance of the rotor is modeled by the presence of a point unbalanced 
mass m0 rigidly attached to the rotor at a distance of R0 from the axis of rotation 
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Fig. 1. The unbalanced double-support rotor with autobalancer 

in the plane A. In the transverse plane z = zA, an autobalance is attached to the 
rotor with a set of compensating solid-state weights (balls, rollers, etc.).  
The common center of mass of the composite rotor with an unbalanced mass 
and an autobalancer is located at point C on the axis of rotor rotation. 

In the considered physical model, it is assumed that the unbalanced mass 
and the compensating weights masses of the autobalancing device are 
considerable and can be comparable with the mass of the rotor. As a result, the 
composite rotor acquires qualitatively new dynamic properties. This property 
distinguishes this model from the existing ones. The rotor motion is described in 
the fixed coordinate system xyz and in the rotating axes . The origin of O 
coincides with the common center of mass of the system (point C) with a 
stationary rotor. 

A complete description of the physical model parameters of the “rotor–
multi-mass autobalancer” mechanical system and the derivation of its motion 
system of equations are given in [9, 10]. 

We note that to obtain the necessary conditions for the autobalancing 
stability using the engineering phase criterion [11], it is sufficient to consider a 
simpler physical model. In this case, the motion of an unbalanced rotor with an 
unbalanced mass, but without an autobalancer, is investigated. 

The mechanical system under consideration is characterized by the follow-
ing main dimensionless parameters: 
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xp  is the dimensionless rotor speed; 

0 0 0C C A  is the dimensionless parameter characterizing the type of 
rotor: the short type 0( 1),C  the long type 0( 1)C  or the spherical type  

0( 1);C  
0 0 sm m M  is the dimensionless unbalance mass characterizing static 

and dynamic unbalance of the rotor; 
0A  is the dimensionless parameter characterizing the magnitude of the 

inertial anisotropy of the unbalanced rotor, caused by the influence of the un-
balanced mass of the rotor; 

1xp , p , yc  are dimensionless parameters depending on the respec-
tive masses, moments of inertia and stiffness of the supports, which character-
ize the influence of the rotor installation pattern relative to the supports (inter-
support symmetric, inter-support non-symmetric, cantilever); 

0Az  is the dimensionless distance of the unbalance mass and autobalancer 
from the common center of mass of the rotor system. 

For a complete description of dimensional and dimensionless parameters 
of a mechanical system, see [9–11]. 

Necessary conditions for the autobalancing stability. The following nec-
essary stability conditions for autobalancing a double-support rotor were ob-
tained in [11]: 

 
2 2 202 0

2 2 2 202 2 4
0aA

K K

I z
I

,  (1) 

where  

02 0 01 ;I C A  
2 2

0 02
202 0

2
;A y A

a
A

p z c z
I z

  

K2,4 are upper values of the split critical rotor speeds; a is the antiresonance 
critical rotor speed. 

Conditions (1) are obtained using the engineering phase criterion for the 
autobalancing occurrence. Physically, these conditions show that the autobal-
ancing mode of movement can take place only under the condition of anti-
phase movement of the rotor axis balanced point (point A) with respect to the 
direction of the unbalance caused by the rotor unbalance mass. 

The critical speeds of a spatially moving rotor, included in conditions (1), 
are determined by expressions for the general case of system parameters [10]: 
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where 01,2 0 01 .I C A  
The considered rotor can have from one to four critical rotational speeds 

Ki, i = 1, 2, 3, 4, depending on the values of the system parameters. The values 

K1,2 = Kx1,2 correspond to the transverse oscillations of the rotor, and  
K3,4 = K 1,2 correspond to the angular oscillations of the rotor with typical 

values of the system parameters. Moreover, in the ranges between the split crit-
ical velocities (i.e., for at K1 <  < K2 and K3 <  < K4), the rotor move-
ment is unstable due to its inertial anisotropy [12, etc.]. 

Thus, autobalancing of the rotor is generally possible in two ranges of ro-
tational speed: 
 1 2  and 3 ,  (3) 
where  

1 2 4min , ,K a K ; 2 3min , ;a K  

3 2 4max , , ;K a K  1 2 3 . 

Here, for formalization, we used a set of critical (boundary) rotational speeds 
1,2,3, which is ordered in ascending order from K2, K3, K4, a values, see (1), 

(2). For traditional rotary machines, there are relations: K2 < a < K3 < K4,  
i.e., 1 = K2, 2 = a, 3 = K4. However, depending on the parameters of the 
system, the intermediate boundary velocity 2 can be equal to the value of both 

a and K3, which takes into account the possibility of a loss of stability of 
oscillations of an inertia-anisotropic rotor. 

The necessary conditions for the stability of autobalancing (1) summarize the 
known conditions obtained for a spatially moving rotor in [2], since they take 
into account the peculiar influence of an unbalanced mass on the dynamic 
properties of a rotating rotor. 

For clarity, the Fig. 2 shows the onset areas location of the rotor autobalance, 
taking into account the influence of the unbalance and areas of stability loss. 

The influence analysis of system parameters on rotor autobalancing 
stability conditions. The necessary stability conditions for the autobalancing 
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Fig. 2. Areas of rotor speed , within which its autobalancing is possible, taking into 
account the influence of unbalance mass: 

 are areas of the anti-phase rotor movement;  is the motion instability  
of inertial-anisotropic rotor 

of a spatially moving rotor (3) depend in a nontrivial way on the system  
parameters. A qualitative analysis of this influence was performed in [11].  
Below are the results of numerical analysis. 

In Fig. 3–5 shows graphs characterizing the areas of system parameters in 
which rotor autobalancing is possible. The graphs are plotted with the follow-
ing basic values of the parameters: 0C  0.75; s 0.4; 0A 0.1; 0Az 0.8; 

0m 0.05; 0R  2; 0mA 0.2. In addition, in the case of an asymmetrically in-
stalled rotor ( 0.8),Ll  we have 1 41.46; 0.75;y Kp c  (0.837; 0.849; 
2.52; 3.80); a 2.24; for a symmetrically mounted rotor  ( 0.5),Ll  we have 

41K = 1 41.25; 0;y Kp c (1; 1; 2.11; 3.23);  a = 1.67 and for the 
cantilever rotor ( Ll = 1.2) we have p 2.15, yc  1.75, 1 4K  (0.567; 
0.575; 3.73; 5.61), a 3.20. Calculations were carried out using formulas  
(1)–(3), see also works [9–11]. 

Fig. 3. Amplitude-frequency characteristic of the unbalanced rotor point A motion 
(taking into account the sign of the point deviation): 

 is the anti-phase rotor movement, where autobalance is possible 

The amplitude-frequency characteristic of rotor oscillations in Fig. 3 
illustrates the arrangement of the rotational frequency ranges of the unbalanced 
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Fig. 4. The necessary boundaries 1,2,3 of the rotor autobalancing depending  
on the rotor type 0:C  

-------- is the K3,4 for isotropic rotor; 0A = 0;  is the anti-phase rotor movement, where 
autobalance is possible 

Fig. 5. The necessary boundaries 1,2,3 of the rotor autobalancing for asymmetrically 
located long rotor ( Ll  0.8) depending on:  

a is the unbalanced mass location 0 ;Az  b is the degree of the rotor inertial anisotropy 0,A  
caused by the influence of unbalance mass 

rotor, within which the anti-phase movement of the balanced point A on its axis 
takes place. In this case, the rotor is of a long type and asymmetrically mounted 
with respect to the supports. In the ranges of Ω, where the amplitude of the 
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lateral displacement of the rotor is negative: 0,rA A AA r  the rotor 
deviates from the axis of rotation in the direction opposite to the direction of the 
unbalance force action 0.S  In these ranges, the onset of the autobalancing mode 
of the rotor system is possible. 

In Fig. 4 shows the rotor type (parameter 0)C  affecting on the number 
and location of areas in which autobalancing is possible. The calculations are 
performed on the example of an asymmetrically located rotor ( Ll  = 0.8). The 
graphs illustrate the features of autobalancing rotors of the long, spherical and 
short types formulated in [11]. It follows from the graphs that: 

a) a long rotor 0 01C A  can be autobalanced in two ranges of  
rotational speeds: at 1 2  and at 3;  

b) a rotor close to spherical type 20 0 0 01 1 ,AA C A z   
allows autobalancing in one rotor speed range, bounded above and below 
when 1 2;  

c) a short rotor 20 0 01 AC A z  has one range of rotational 
speed, bounded below when 1.  

Graphs in Fig. 5a show, that the location of the unbalance and autobalance 
has a noticeable effect on the ability to autobalance. From this point of view, the 
most favorable case is when the plane of location of the unbalance mass and the 
autobalancing device passes through a common center of mass C of the 
composite rotor, i.e., parameter 0Az = 0. Increasing the absolute value of the 
parameter  0 0Az  leads to a narrowing of the areas of possible rotor 
autobalancing. 

In Fig. 5b using the example of a long rotor, the effect of the inertial 
anisotropy 0A  of the composite rotor (which, in turn, is caused by the influence 
of the unbalanced mass 0)m  on the possibility of autobalancing is shown. Recall 
that it is the consideration of this factor that distinguishes this work from the 
existing results. It follows from the graphs that an increase in 0A  leads to a slight 
expansion of the “lower” area of possible autobalancing, where 1 <  < 2. 
However, the “upper” area of possible autobalancing is noticeably narrowing, 
where   > 3. In general, the unbalanced mass m0 and the inertial anisotropy 

A0 caused by the mass lead to a deterioration in the possibility of autobalancing 
the rotor. 

Because of the analysis, it was found that the mass of the unbalance and 
the autobalance can significantly affect the values of the critical rotational 
speeds (primarily in terms of angular oscillations), which are the boundaries of 
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the areas where the rotor is automatically balanced (see Fig. 5b). Therefore, the 
actual question is, in which cases it is necessary to take into account the mass 
of unbalance and autobalance in the theoretical analysis of the system. In [10], 
the following formal criterion was proposed for the need to take into account 
the influence of unbalance mass and autobalance 

 1,2max ,K K K  (4) 

where 1,2 0
1,2

1,2
1 1 ;

1
K K

K
K

A
C

 K  is the coefficient of 

the rotor sensitivity to inertial anisotropy, due to the unbalanced mass and 
autobalancer. This coefficient represents the largest relative change in the critical 
speeds of the angular oscillations of the rotor;  K   is the permissible error 
of determining the values of the critical speeds of the angular oscillations of the 
rotor. It is recommended to take the permissible value equal to K = 0.15. 

According to the physical meaning, criterion (4) reflects the requirement that 
the error in determining the critical rotational speeds does not exceed the normal-
ized value. According to the expressions in (4), this criterion can also be expressed 
in terms of the maximum permissible value of the rotor inertial anisotropy  

0 ,A  which is caused by the presence of an unbalance mass 0 :m    

 2
0 0 01 1 1 KA A C .  (5) 

In the case of the criterion inequality (5) or (4) fulfillment, it is necessary to 
take into account the influence of the unbalanced mass and the autobalancing 
device mass on the mechanical system dynamics, i.e., to apply a refined model of 
the system movement and the necessary conditions for the autobalancing 
stability (1). For the numerical examples given earlier, the limit value of the 
unbalanced rotor inertial anisotropy is 0A 0.069 (Fig. 5b), which 
corresponds to a relative unbalance mass 0 0.017.m  Otherwise, it is sufficient 
to use a simplified (traditional) model of the rotor system motion, in which the 
unbalance and the autobalancer masses are considered small values (of the first 
order of smallness). 

Note that mentioned criterion (4), (5) is applicable to rotors of a long type 
and close to a spherical type. In these cases, the rotor has critical speeds of both 
angular K 1,2 and transverse Kx1,2 vibrations. On the other hand, short-type 
rotors (when  20 0 01 )AC A z  are weakly sensitive to inertial anisotropy  

0,A  since in this case the critical velocities of the angular oscillations are 
physically absent. For such rotors, it is possible to suppose that it is permissible to 
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disregard the influence of the unbalanced mass and the autobalancing device on 
the dynamics of the mechanical system. 

Conclusion. It is shown that the unbalance mass can significantly affect the 
dynamic properties of the mechanical system “unbalanced rotor–autobalancer”. 
It has been established that the use of traditional models, where the unbalance 
and autobalancer masses are assumed small, can lead to significant errors in the 
analysis of the spatially moving rotor dynamics. 

Analysis of the system parameters influence allowed us to establish the 
following. 

1. Depending on the rotor dynamic type, there may be one or two onset areas 
of the autobalancing motion mode. Wherein: 

– a long rotor can be automatically balanced in two ranges of rotational 
speed; 

– a rotor close to a spherical type allows autobalancing in one speed range, 
bounded above and below; 

– a short rotor has one range of rotational speed, bounded below. 
2. The location of unbalance and autobalance has a noticeable effect on the 

autobalancing ability. From this point of view, the most favorable is the case 
when the plane of location of the unbalance mass and the autobalancing device 
passes through the common center of mass C of the composite rotor. Increasing 
in one or the other direction of the distance between the center of mass C and the 
plane of location of the unbalance mass and the autobalancing device lead to a 
narrowing of the areas of possible rotor autobalancing. 

3. The possibility of the rotor autobalancing can significantly depend on the 
magnitude of the unbalance and autobalancer masses. Due to the influence of 
this factor, the rotor in more or less degree exhibits the property of inertial 
anisotropy, critical rotational speeds splitting (doubling) takes place and between 
these speeds, the motion of the system is unstable. The analysis showed that the 
most sensitive to this factor are long rotors and rotors, close to the spherical type. 

4. With the help of the proposed criterion for the given numerical example, 
the limiting values of the rotor inertial anisotropy  0A  (and the corresponding 
relative unbalance mass 0 )m   are determined. If these limits are exceeded, the 
effect of unbalance and autobalancer masses on the stability of the rotor 
autobalance must be taken into account. Otherwise, as well as in the case of a 
short-type rotor, it suffices to use a simplified (traditional) model of the rotor 
system, in which the unbalance and autobalancer masses are considered small. 

The results will be useful in the design and operation of rotor mechanisms 
with autobalancer. 

Translated by V. Shumaev 
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