ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ МЕСТНОГО КОЭФФИЦИЕНТА ТЕПЛООТДАЧИ НА ПОВЕРХНОСТИ КАМЕРЫ СГОРАНИЯ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ МЕТОДОМ ГРАДИЕНТНОЙ ТЕПЛОМЕТРИИ

С.З. Сапожников	serg.sapozhnikov@mail.ru
В.Ю. Митяков	mitvlad@mail.ru
А.В. Митяков	andrey.mityakov@gmail.com
А.В. Винцаревич	vincarevich@yandex.ru
Д.В. Герасимов	guntram30@gmail.com

Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Российская Федерация

Аннотация	Ключевые слова
Методом градиентной теплометрии определены местные коэффициенты теплоотдачи на огневой поверхности. Исследовано два режима работы двигателя: работа при поршневом сжатии-рас- ширении и с включенной топливоподачей на холостом ходу. Показано, что распределение коэффициента теплоотдачи на поверхности ог-	Градиентные датчики теплового потока, градиентная тепломет- рия, двигатель внутреннего сго- рания, нестационарная плот- ность теплового потока, мест- ный коэффициент теплоотдачи, головка блока иилиндров
невой плиты неоднородно. Результаты исследо- вания могут быть использованы для верифика- ции существующих моделей теплообмена в каме- ре сгорания	Поступила 04.06.2018 © Автор(ы), 2019

Работа выполнена при поддержке гранта РФФИ № 16-08-01263-а

Введение. В процессе работы двигатель внутреннего сгорания (ДВС) подвергается интенсивным знакопеременным тепловым нагрузкам. Закономерности сложного конвективно-радиационного теплообмена в цилиндре двигателя изучают расчетно-теоретическими методами, экспериментально, а также совмещая оба подхода.

Расчетно-теоретические методы сводятся к определению коэффициента теплоотдачи на стенках камеры сгорания (КС) и разности температуры между газом и стенкой КС. Число α-формул (в основном полученных эмпирически) велико, но точность расчетов на их основе не всегда удовлетворяет исследователей. Некоторые зависимости при одних и тех же условиях «занижают» значение коэффициента теплоотдачи, другие — «завышают» [1]. Расчетное значение плотности теплового потока на поверхности КС существенно зависит от выбранной α-формулы. Из всего разнообразия α-формул только зависимость Вошни наиболее универсальна и дает результаты, близкие к экспериментальным. Однако для этого необходимо определить все входящие в нее коэффициенты, т. е. зависимость «требует настройки».

Экспериментальное изучение теплообмена в КС затруднено нестационарностью рабочего процесса, большими перепадами давления, агрессивностью среды КС. Единственным методом измерения плотности тепловых потоков в КС до последнего времени была термометрия. Разность температуры между спаями термопар, заделанных в стенку КС, составляет от долей до единиц градусов [2]. Столь малое изменение температуры и высокая скорость ее изменения в цикле предъявляют повышенные требования к измерительной аппаратуре. Изготовление быстродействующих термопар затруднено [3]; при термометрии необходимо точно определять координаты спаев и контролировать одномерность теплового потока в местах измерения [4]. Для восстановления плотности теплового потока используется искусственный прием — нахождение нулевой линии [5].

Цель настоящей работы — определить местные коэффициенты теплоотдачи в КС дизельного двигателя методом градиентной теплометрии.

Методы измерения и монтаж датчиков. В настоящей работе использованы гетерогенные градиентные датчики теплового потока (ГГДТП),

Рис. 1. Схема и принцип работы ГГДТП

изготовленные из косослойного композита с искусственно созданной анизотропией (рис. 1) [6, 7]. Вследствие анизотропии тепло-, электропроводности и коэффициентов термоЭДС градиент температуры возникает в двух направлениях — коллинеарно и нормально вектору теплового потока. Поперечный эффект Зеебека приводит к появлению термоЭДС, пропорцио-

нальной плотности теплового потока. Гетерогенные градиентные датчики теплового потока позволяют проводить прямые измерения плотности теплового потока, а установленная различными авторами постоянная времени ГГДТП (10⁻⁹ ...10⁻⁸ с) позволяет считать измерения практически безынерционными [7].

Плотность теплового потока, определяемую методом градиентной теплометрии, можно представить как

$$q = \frac{E}{S_0 F},$$

где *Е* — сигнал, генерируемый ГГДТП; *S*₀ — вольт-ваттная чувствительность ГГДТП; *F* — площадь ГГДТП в плане.

Вольт-ваттная чувствительность ГГДТП зависит от температуры, поэтому в зоне монтажа требуется разместить не только датчик теплового потока, но и спай термопары.

Исследования проводились на дизельном двигателе Indenor XL4D на режиме холостого хода. Объем двигателя 1,357 см², диаметр цилиндра 78 мм, ход поршня 71 мм, степень сжатия 23, максимальная мощность 35 кВт при 5000 мин⁻¹, максимальный крутящий момент 84,3 H · м при 2500 мин⁻¹. Блок-схема измерительной установки приведена на рис. 2.

Рис. 2. Блок-схема измерительной установки

Частота вращения и положение коленчатого вала определялись оптическим датчиком частоты вращения, который генерировал прямоугольный импульс с провалом, позволяя определить положение верхней мертвой точки (BMT). Разрешающая способность записи составила 1° п.к.в. Измерение плотности теплового потока проводилось с помощью ГГДТП из композиции никель + сталь, работоспособного в агрессивной среде КС в течение продолжительного времени. При высокой термостойкости такие ГГДТП генерируют достаточно низкий сигнал (пиковые значения достигают 200 мкВ), для измерения и регистрации которого был использован комплекс National Instruments с платой NI PXI-6289 разрядностью 18 бит. Для регистрации сигнала термопар использована плата NI SCXI-1102C.

Схема монтажа и фотография ГГДТП приведены на рис. 3.

Рис. 3. Схема монтажа ГГДТП (*a*) и фотография ГГДТП (*б*), установленных заподлицо с поверхностью огневой плиты

В месте заделки каждого ГГДТП также были установлены по два спая термопар для измерения температуры газа и стенки. Спаи для измерения температуры стенки расположены на глубине 0,3 мм от огневой поверхности.

Оценка толщины теплового пограничного слоя в ВМТ по формуле из работы [8] $\delta_{\rm T} = 0,0048 S^{0,68}$ ($\delta_{\rm T}$ — толщина теплового пограничного слоя, S — ход поршня) показала, что $\delta_{\rm T} \approx 0,7$ мм.

Зазор между поршнем и головкой также составляет 0,7 мм. Гетерогенные градиентные датчики теплового потока 1 и 2 установлены над плоской частью поршня, а ГГДТП 3 и 4 находятся над камерой в поршне, что позволяет вывести термоспаи дальше от огневой поверхности. Поэтому термопары для измерения температуры газа были установлены в двух вариантах: для ГГДТП 1 и 2 горячий спай «газовой» термопары выступал в объем КС на 0,7 мм, а для ГГДТП 3 и 4 — на 1,7 мм. **Результаты и обсуждение.** Все измерения проводились при частоте вращения 1500 мин⁻¹. Вначале двигатель работал без топливоподачи (режим поршневого сжатия-расширения). На рис. 4, *а* приведены временные теплограммы — зависимости плотности теплового потока от времени [7]. Местная плотность теплового потока неоднородна, но максимум плотности теплового потока достигается на поверхности КС одновременно вблизи 12° п.к.в.

Рис. 4. Теплограммы (*a*) и коэффициенты теплоотдачи (*б*) при поршневом сжатии-расширении: кривые 1–4 соответствуют местам установки ГГДТП 1–4 соответственно

Значения местного коэффициента теплоотдачи в различных точках КС, рассчитанные по плотности теплового потока и разности температур газа и стенки, приведены на рис. 4, *б*. Форма кривой имеет тот же характер, что и теплограмма. Максимум коэффициента теплоотдачи достигается одновременно с максимумом плотности теплового потока для ГГДТП 2, для ГГДТП 1 и 3 — на 2 и 5° п.к.в. раньше. Такое расхождение можно объяснить неодновременностью сгорания топлива в КС.

Для ГГДТП 4 изменение плотности теплового потока и коэффициента теплоотдачи незначительно, хотя имеет такой же характер. Для ГГДТП 3

в двух точках, около 60° до и после ВМТ, плотность теплового потока меняет знак; при этом коэффициент теплоотдачи достигает минимального значения. В месте установки ГГДТП 1 пиковое значение коэффициента теплоотдачи наибольшее из всех, хотя его среднее значение несколько ниже, чем у ГГДТП 2. Сравнивая ГГДТП 1 и 4, можно предположить, что при сходстве теплограмм движение газа в КС около ГГДТП 1 более интенсивное.

Теплограммы, полученные при работе двигателя с топливоподачей на холостом ходе, приведены на рис. 5, *а*. Максимумы плотности теплового потока достигаются одновременно, как и при поршневом сжатиирасширении. Качественное отличие от теплограмм компрессорного режима заключается в появлении второго пика сгорания, характерного для дизельного двигателя. Он присутствует на всех кривых, но различен по форме. В месте установки ГГДТП 2 второй пик выше, чем первый. Возможно, что сгорание, начавшись в зоне ГГДТП 3, позже переместилось к ГГДТП 2. Полученные результаты значений теплового потока согласуются с данными работ [9, 10].

Рис. 5. Теплограммы (*a*) и коэффициенты теплоотдачи (*б*) при включенной топливоподаче: кривые 1–4 соответствуют местам установки ГГДТП 1–4 соответственно

Экспериментальное определение местного коэффициента теплоотдачи...

При работе с топливоподачей во всех исследуемых областях КС поток остается положительным, а картина распределения коэффициента теплоотдачи меняется (рис. 5, δ). Максимальные значения достигаются в месте установки ГГДТП 4 и 2. Моменты наступления максимума теперь сильно различаются: для ГГДТП 1 и 3 максимум наблюдается при 20°, для ГГДТП 2 — при 7°, а для ГГДТП 4 коэффициент теплоотдачи достигает наибольшего значения еще до ВМТ, при –7°. Такое различие объясняется сложностью движения и горения топливно-воздушной смеси в КС. Полученные значения коэффициента теплоотдачи согласуются с данными из работы [11].

Выводы. С помощью нового метода — градиентной теплометрии — определены местные коэффициенты теплоотдачи в КС вихрекамерного ДВС. Результаты могут быть использованы для верификации моделей теплообмена в КС ДВС. Гетерогенные градиентные датчики теплового потока позволяют опытным путем получать кривую тепловыделения. Градиентная теплометрия может оказаться полезной при исследовании распространения фронта пламени в КС.

Авторы выражают благодарность А.В. Павлову, Л.А. Воробьеву и А.В. Ларину за помощь в работе.

ЛИТЕРАТУРА

[1] Broekaert S., Demuynck J., De Cuyper T., et al. Heat transfer in premixed spark ignition engines. Part I: Identification of the factors influencing heat transfer. *Energy*, 2016, vol. 116, p. 1, pp. 380–391. DOI: 10.1016/j.energy.2016.08.065

[2] Torregrosa J., Broatch A., Olmeda P., et al. Experimental study of the influence of exhaust gas recirculation on heat transfer in the firedeck of a direct injection diesel engine. *Energ. Convers. Manage*, 2017, vol. 153, pp. 304–312.

DOI: 10.1016/j.enconman.2017.10.003

[3] Геращенко О.А., Гордов А.Н., Лах В.И. и др. Температурные измерения. Киев, Наукова думка, 1984.

[4] Salvatore P. Heat flux measurement device: designing an experimental system for determining the effectiveness of thermal barrier coating inside a combustion chamber. Master thesis. Södertälje, Sweden, 2015.

[5] Кавтарадзе Р.З. Локальный теплообмен в поршневых двигателях. М., Изд-во МГТУ им. Н.Э. Баумана, 2007.

[6] Геращенко О.А. Основы теплометрии. Киев, Наукова думка, 1971.

[7] Сапожников С.З., Митяков В.Ю., Митяков А.В. Основы градиентной теплометрии. СПб., Изд-во Политехн. ун-та, 2012.

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2019. № 4

[8] Boulouchos K., Eberle M. Aufgabenstellungen der Motorthermodynamik heute — Beispiele und Losungsansatze. *MTZ*, 1991, bb. 47, N. 9, ss. 574–583.

[9] Finol Parra C. Heat transfer investigations in a modern diesel engine. Doctoral Thesis. University of Bath, 2008.

[10] Agrira A. Internal combustion engine heat transfer-transient thermal analysis. Doctoral Thesis. University of Southern Queensland, 2012.

[11] Rakopoulos C.D., Antonopoulos K.A., Rakopoulos D.C., et al. Study of combustion in a divided chamber turbocharged diesel engine by experimental heat release analysis in its chambers. *Appl. Therm. Eng.*, 2006, vol. 26, no. 14-15, pp. 1611–1620. DOI: 10.1016/j.applthermaleng.2005.11.020

Сапожников Сергей Захарович — д-р техн. наук, заведующий кафедрой «Теплофизика энергетических установок» Санкт-Петербургского политехнического университета Петра Великого (Российская Федерация, 195251, Санкт-Петербург, Политехническая ул., д. 29).

Митяков Владимир Юрьевич — д-р техн. наук, профессор кафедры «Теплофизика энергетических установок» Санкт-Петербургского политехнического университета Петра Великого (Российская Федерация, 195251, Санкт-Петербург, Политехническая ул., д. 29).

Митяков Андрей Владимирович — д-р техн. наук, профессор кафедры «Теплофизика энергетических установок» Санкт-Петербургского политехнического университета Петра Великого (Российская Федерация, 195251, Санкт-Петербург, Политехническая ул., д. 29).

Винцаревич Артём Валерьевич — аспирант кафедры «Теплофизика энергетических установок» Санкт-Петербургского политехнического университета Петра Великого (Российская Федерация, 195251, Санкт-Петербург, Политехническая ул., д. 29).

Герасимов Даниил Валерьевич — студент кафедры «Теплофизика энергетических установок» Санкт-Петербургского политехнического университета Петра Великого (Российская Федерация, 195251, Санкт-Петербург, Политехническая ул., д. 29).

Просьба ссылаться на эту статью следующим образом:

Сапожников С.З., Митяков В.Ю., Митяков А.В. и др. Экспериментальное определение местного коэффициента теплоотдачи на поверхности камеры сгорания дизельного двигателя методом градиентной теплометрии. *Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение*, 2019, № 4, с. 87–96. DOI: 10.18698/0236-3941-2019-4-87-96

USING GRADIENT HEAT FLUX MEASUREMENT TO EXPERIMENTALLY DETERMINE LOCAL HEAT TRANSFER COEFFICIENT ON COMBUSTION CHAMBER SURFACE IN A DIESEL ENGINE

S.Z. Sapozhnikov	serg.sapozhnikov@mail.ru
V.Yu. Mityakov	mitvlad@mail.ru
A.V. Mityakov	andrey.mityakov@gmail.com
A.V. Vintsarevich	vincarevich@yandex.ru
D.V. Gerasimov	guntram30@gmail.com

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation

Abstract	Keywords
We used gradient thermometry to determine local	Gradient heat flux sensors, gradient
heat transfer coefficients on the fire deck surface.	heat flux measurement, internal
We studied two modes of engine operation, that is,	combustion engine, non-steady
motored and fired. We show that the heat transfer	state heat flux, local heat transfer
coefficient distribution over the fire deck surface is	coefficient, cylinder head
inhomogeneous. Our investigation results may be	
used to validate existing models of heat transfer in	Received 04.06.2018
a combustion chamber	© Author(s), 2019

The study was supported by the RFBR grant no. 16-08-01263-a

REFERENCES

[1] Broekaert S., Demuynck J., De Cuyper T., et al. Heat transfer in premixed spark ignition engines.Part I: Identification of the factors influencing heat transfer. *Energy*, 2016, vol. 116, p. 1, pp. 380–391. DOI: 10.1016/j.energy.2016.08.065

[2] Torregrosa J., Broatch A., Olmeda P., et al. Experimental study of the influence of exhaust gas recirculation on heat transfer in the firedeck of a direct injection diesel engine. *Energ. Convers. Manage*, 2017, vol. 153, pp. 304–312. DOI: 10.1016/j.enconman.2017.10.003

[3] Gerashchenko O.A., Gordov A.N., Lakh V.I., et al. Temperaturnye izmereniya [Temperature measurements]. Kiev, Naukova dumka Publ., 1984.

[4] Salvatore P. Heat flux measurement device: designing an experimental system for determining the effectiveness of thermal barrier coating inside a combustion chamber. Master thesis. Södertälje, Sweden, 2015.

[5] Kavtaradze R.Z. Lokal'nyy teploobmen v porshnevykh dvigatelyakh [The Local Heat Transfer in Reciprocating Engines]. Moscow, Bauman MSTU Publ., 2007.

[6] Gerashchenko O.A. Osnovy teplometrii [Heat flux measurement fundamentals]. Kiev, Naukova dumka Publ., 1971.

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2019. № 4

[7] Sapozhnikov S.Z., Mityakov V.Yu., Mityakov A.V. Osnovy gradientnoy teplometrii [Gradient heat flux measurement fundamentals]. St. Petersburg, Izd-vo Politekh. un-ta Publ., 2012.

[8] Boulouchos K., Eberle M. Aufgabenstellungen der Motorthermodynamik heute — Beispiele und Losungsansatze. *MTZ*, 1991, bb. 47, N. 9, ss. 574–583.

[9] Finol Parra C. Heat transfer investigations in a modern diesel engine. Doctoral Thesis. University of Bath, 2008.

[10] Agrira A. Internal combustion engine heat transfer-transient thermal analysis. Doctoral Thesis. University of Southern Queensland, 2012.

[11] Rakopoulos C.D., Antonopoulos K.A., Rakopoulos D.C., et al. Study of combustion in a divided chamber turbocharged diesel engine by experimental heat release analysis in its chambers. *Appl. Therm. Eng.*, 2006, vol. 26, no. 14-15, pp. 1611–1620. DOI: 10.1016/j.applthermaleng.2005.11.020

Sapozhnikov S.Z. — Dr. Sc. (Eng.), Professor, Head of Department of Thermal Physics of Power Plants, Peter the Great St. Petersburg Polytechnic University (Politekhnicheskaya ul. 29, St. Petersburg, 195251 Russian Federation).

Mityakov V.Yu. — Dr. Sc. (Eng.), Professor, Department of Thermal Physics of Power Plants, Peter the Great St. Petersburg Polytechnic University (Politekhnicheskaya ul. 29, St. Petersburg, 195251 Russian Federation).

Mityakov A.V. — Dr. Sc. (Eng.), Professor, Department of Thermal Physics of Power Plants, Peter the Great St. Petersburg Polytechnic University (Politekhnicheskaya ul. 29, St. Petersburg, 195251 Russian Federation).

Vintsarevich A.V. — Post-Graduate Student, Department of Thermal Physics of Power Plants, Peter the Great St. Petersburg Polytechnic University (Politekhnicheskaya ul. 29, St. Petersburg, 195251 Russian Federation).

Gerasimov D.V. — Student, Department of Thermal Physics of Power Plants, Peter the Great St. Petersburg Polytechnic University (Politekhnicheskaya ul. 29, St. Petersburg, 195251 Russian Federation).

Please cite this article in English as:

Sapozhnikov S.Z., Mityakov V.Yu., Mityakov A.V., et al. Using gradient heat flux measurement to experimentally determine local heat transfer coefficient on combustion chamber surface in a diesel engine. *Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering*, 2019, no. 4, pp. 87–96 (in Russ.). DOI: 10.18698/0236-3941-2019-4-87-96