ОЦЕНКА НАДЕЖНОСТИ МЕТАЛЛИЧЕСКОЙ ОБЛИЦОВКИ ПРИМЕНИТЕЛЬНО К КОРПУСУ РЕАКТОРА БРЕСТ-ОД-300 С ПОЗИЦИЙ ХРУПКОЙ ПРОЧНОСТИ И ТЕЧИ

В.И. Солонин¹ А.Н. Терехин^{1, 2} Е.А. Шиверский² en7@power.bmstu.ru toto-93@yandex.ru shiversky@nikiet.ru

¹ МГТУ им. Н.Э. Баумана, Москва, Российская Федерация ² АО «НИКИЭТ им. Н.А. Доллежаля», Москва, Российская Федерация

Аннотация

Многослойный металлобетонный корпус реакторной установки БРЕСТ-ОД-300, в состав которого входит металлическая облицовка, покрывающая внутренние полости и проходки корпуса, создается впервые и не имеет аналогов. В такой ситуации методы теории надежности, основанные на статистике эксплуатации или испытаний изделий, не применимы. Предложена методика оценки надежности металлической облицовки корпуса, учитывающая случайный характер нагрузок, действующих на конструкцию, и характеристик материала, позволяющая оценить вероятность достижения предела хрупкой прочности или появления течи. Оценка основана на численном моделировании роста постулированных дефектов, учете вероятностей их пропуска в процессе контроля, вычислении характеристик прочности в процессе эксплуатации конструкции с использованием конечно-элементных моделей. Выполнен учет нагрузок от свинцового теплоносителя, внутрикорпусного оборудования в условиях действия высоких температур и ионизирующего излучения, а также от цикличности нагружений, связанной с изменением режимов работы реактора. Применение методики позволило определить наиболее опасные элементы металлической облицовки. Полученные результаты демонстрируют высокий уровень надежности металлической облицовки корпуса реакторной установки БРЕСТ-ОД-300, обусловленный малыми значениями вероятностей хрупкого разрушения и течи

Ключевые слова

Многослойный металлобетонный корпус, металлическая облицовка, надежность корпуса, механико-статистическое моделирование, хрупкое разрушение и течь

Поступила 16.01.2019 © Автор(ы), 2019 **Введение.** В проекте реакторной установки (РУ) БРЕСТ-ОД-300 использован многослойный металлобетонный корпус (ММБК), который выполняет функции третьего и четвертого барьеров безопасности. Корпус подобной конструкции создается впервые, вследствие чего методы теории надежности, основанные на анализе статистических данных, для ММБК не применимы. Для корпуса РУ БРЕСТ-ОД-300 предлагается использовать методы статистического моделирования расчета надежности, широко распространенные для моделирования разрушения конструкций из металла и бетона.

В настоящее время используются технологии численного моделирования [1–3], позволяющие рассчитать надежность конструкций. Предлагаемый подход базируется на учете в рамках статистического моделирования случайного характера нагрузок, действующих на конструкцию, наличия дефектов в элементах конструкции, накопления повреждений, влияющих на процессы, приводящие к потере герметичности. Такой учет факторов, влияющих на надежность корпуса, будет реализован впервые.

Объектом рассмотрения являются процессы взаимодействия металлических и бетонных слоев ММБК РУ БРЕСТ-ОД-300 под действием нагрузок от свинцового теплоносителя, внутрикорпусного оборудования в условиях температурного и радиационного нагружений в процессе эксплуатации. На первом этапе разработки методики оценки надежности ММБК, описываемой в настоящей статье, напряжения, силовые и температурные нагрузки, действующие на конструкцию, задавались в виде детерминистических величин.

Постановка задачи. Расчет напряженно-деформированного состояния (НДС) корпуса. Металлобетонный корпус реактора состоит из центральной и четырех периферийных полостей, соединенных между собой горизонтальными проходками. В центральной полости размещены активная зона, шахта, колонна органов регулирования системы управления и защиты. В периферийных полостях — модули парогенераторов, главные циркуляционные насосные агрегаты, теплообменники расхолаживания [4].

Внутреннюю поверхность полостей и проходок корпуса образует металлоконструкция (облицовка), которая контактирует со свинцовым теплоносителем и газовой средой, отделяющей теплоноситель от верхнего перекрытия корпуса, и опирается на бетон. Облицовка выполняется из биметаллического листа толщиной 32 мм (углеродистая сталь марки 09Г2С, плакирующий слой из стали марки 10Х15Н9С3Б1-Ш (ЭП302-Ш)) [5].

Консервативно в расчетах считали, что облицовка выполнена целиком из стали марки 09Г2С. Консерватизм сделанного допущения обусловлен более высокими механическими характеристиками материала наплавки по сравнению с основным металлом.

Бетон трех составов обеспечивает прочность корпуса, передачу нагрузок на днище шахты реакторного отделения и локализацию возможных протечек теплоносителя в случае нарушения герметичности облицовки. Бетоны армируют специальными арматурными сетками [6] для предотвращения чрезмерного раскрытия трещин в бетоне, образующихся при эксплуатации корпуса.

Для оценки надежности облицовки корпуса на основе механикостатистических моделей хрупкого разрушения, расчета подроста дефектов, приводящего к хрупкому разрушению облицовки или возникновению течи, определяется НДС корпуса реактора. Для этого используется пространственная конечно-элементная модель, составленная в ПК Abaqus [6, 7].

Модель содержит КЭ объемного, оболочечного, балочного типов, описывающие следующие элементы конструкции: металлоконструкция облицовки, бетонный наполнитель с армирующими сетками и другие элементы корпуса. Учитывается воздействие высоких температур (до 600 °C при нарушении нормальных условий эксплуатации) и ионизирующего излучения. Нагрузки от оборудования с учетом сил Архимеда и гидродинамических сил моделировались в виде распределенной нагрузки на соответствующие поверхности облицовки [6]. В расчете учитывались циклические нагрузки, связанные с изменением режимов работы реактора 150 циклов «пуск–работа в стационарном режиме нормальной эксплуатации–останов» за тридцатилетний период эксплуатации корпуса.

До разогрева корпуса реактора напряжения в элементах корпуса ожидаемо не превышают допустимых значений, конструкция работает в области упругости [6]. В процессе разогрева и при стационарном режиме работы в металлоконструкции корпуса образуются зоны пластической деформации, значения которых оказываются ниже предельно допустимых [6].

Полученные значения напряжений и распределения их в облицовке [6] являются основой для расчета вероятностей разрушения и течи. Рассматриваются шесть участков облицовки: верхняя, средняя и нижняя части центральной оболочки, периферийные оболочки, верхние и нижние проходки.

По результатам расчета НДС в каждой из рассматриваемых частей выбираются поперечные сечения с наибольшими величинами напряжений. Реальная форма поперечного сечения (с учетом наличия привариваемых патрубков, деформация и др.) заменяется кольцевым сечением, в котором постулируются максимальные напряжения и наличие дефектов. Допущение о нагружении всего сечения с дефектом максимальным напряжением является консервативным.

Модель расчета подроста дефекта. Оценка подроста дефекта по усталостному механизму, связанному с циклическим нагружением корпуса, выполняется в соответствии с [8] на основе эмпирического уравнения Пэриса:

$$\begin{cases} \frac{da}{dN} = C_f \left[\Delta K f(R)\right]^{n_f} \text{ при } \Delta K > \Delta K_{th}(R,T); \\ \frac{da}{dN} = 0 \text{ при } \Delta K \le \Delta K_{th}(R,T), \end{cases}$$

где da/dN — скорость роста дефекта; C_f , n_f — характеристики материала; $\Delta K = K_{12} - K_{11}$ — размах коэффициента интенсивности напряжений (КИН) первого рода; K_{11} , K_{12} — значения КИН в начале и конце цикла подроста; $\Delta K_{th}(R, T)$ — пороговый размах КИН первого рода; f(R) функция для учета эффектов, связанных с асимметрией циклов нагружения; R — коэффициент асимметрии цикла КИН; T — температура эксплуатации материала.

Значения коэффициентов C_f , n_f , а также вид функций $\Delta K_{th}(R, T)$, f(R) определяются эмпирически и зависят от условий нагружения, класса и состояния металла, температуры, состава рабочей среды.

Модель оценки достижения хрупкого разрушения и течи. Расчет проводился в упругой постановке. Постулировалось наличие кольцевого поверхностного дефекта в рассматриваемом кольцевом поперечном сечении

Рис. 1. Поверхностный полуэллиптический дефект

элемента конструкции. Отметим, что принятые в расчетах размеры дефектов значительно превышают размеры дефектов, обнаруживаемых радиографическим контролем согласно НП-084-15 [9].

Для поверхностного полуэллиптического дефекта (рис. 1) коэффициент интенсивности напряжений [8] можно выразить следующим образом:

$$K_{\rm I} = Y \sigma_{eq} \sqrt{a \, / \, 1000},$$

где *Y* — коэффициент формы; σ_{eq} — напряжения, приведенные к равномерному; *a* — глубина дефекта (малая полуось полуэллиптического дефекта).

Зависимости значений коэффициента формы и приведенного напряжения в точках *C* и *D* от размеров дефекта даны в соответствующих справочных или руководящих документах по расчетам на прочность. Предполагается линейное изменение напряжений по толщине стенки облицовки.

Расчет КИН выполняется с учетом подроста дефекта (т. е. учитывается изменение его размеров (длины и глубины) в процессе эксплуатации конструкции). В соответствии с моделью расчета полагается, что хрупкое разрушение облицовки происходит при достижении коэффициентом интенсивности напряжений K_I значения вязкости разрушения K_{IC} (характеристика трещиностойкости материала). В качестве условия возникновения течи (течь без разрушения) рассматривается состояние, при котором глубина дефекта достигает толщины стенки облицовки, но КИН не превышает значения K_{IC} .

Подготовка исходных данных. Для оценки вероятностей хрупкого разрушения и течей требуется задать напряжения, действующие в сечении рассматриваемого участка металлоконструкции, вязкость разрушения материала металлоконструкции, начальные размеры дефекта.

Характеристику трещиностойкости (вязкость разрушения) и размеры дефекта (глубина и длина) задавали в виде вероятностных законов распределения. Дальнейшее развитие описываемого метода анализа надежности металлоконструкции, а также корпуса в целом связано с заданием нагрузок в виде набора случайных величин.

При задании вязкости разрушения использовались экспериментальные данные. Облучение материала облицовки вызывает снижение его вязкости разрушения. Консервативно использовались значения вязкости разрушения металла в облученном состоянии. В связи с весьма ограниченным числом экспериментальных данных принимался нормальный закон распределения вязкости разрушения. Функции распределения вязкости разрушения приведены на рис. 2, параметры распределения указаны в табл. 1.

Соотношение глубины a и полудлины c начального дефекта принималось подобно [10] a/c = 1/3. Глубина начального дефекта задавалась на основе рекомендаций нормативных документов a = 4 мм и принималась в качестве математического ожидания для нормального закона распределения глубины дефекта. В качестве допущения принято, что среднеквадратическое отклонение составляет 15 % математического ожидания. Параметры распределения приведены в табл. 1, а функции распределения представлены на рис. 3.

Рис. 2. Дифференциальная (*a*) и интегральная (*б*) функции распределения значений вязкости разрушения, полученные на основе данных по испытанию образцов стали марки 09Г2С

Таблица 1

Характеристика	Математическое	Среднеквадратическое от-
	ожидание	клонение
Вязкость разрушения, МПа · м ^{-0,5}	152	14
Глубина дефекта, мм	4	0,6

Параметры распределений

Рис. 3. Принятые в расчете дифференциальная (*a*) и интегральная (*б*) функции распределения начальной глубины дефекта

Учет пропуска дефекта. Металлоконструкция после изготовления проходит проверку на наличие дефектов, в ходе которой должно быть исключено их присутствие в конструкции. Требования к таким провер-

кам (браковочный уровень 0,6 мм) установлены в НП-084-15 [9]. Однако в силу несовершенств контролирующей аппаратуры и ошибок персонала в процессе проверки возможен пропуск дефектов, вероятность которого учитывается с помощью следующего подхода:

– закон распределения плотности вероятностей пропуска дефекта f(a) экспоненциальный:

$$f(a) = Ae^{-ba},$$

где *а* — размер дефекта; *А*, *b* — коэффициенты;

– вероятность того, что будет пропущен дефект с размерами более браковочного уровня, принята равной вероятности до аварийной ошибки персонала при испытаниях, т. е. 2·10⁻⁹ [11];

– в интервале одного среднеквадратического отклонения размера дефектов σ_{*a*} совершается 99 % ошибок персонала.

В результате получена система уравнений

$$\int_{0,6}^{5} Ae^{-ba} da = 2 \cdot 10^{-3},$$

$$\int_{0,6}^{\sigma_{a}} Ae^{-ba} da = 1,98 \cdot 10^{-3},$$

которая позволяет определить параметры функции распределения f(a), вероятность пропуска дефектов, интегрируя f(a) в исследуемом интервале размеров дефекта a.

Алгоритм расчета вероятностей хрупкого разрушения и течи. Для проведения расчетов математические модели подроста дефекта, оценки достижения хрупкого разрушения и течи были записаны в виде программного кода на языке программирования высокого уровня *R*, широко применяемого для статистических анализов [12]. Алгоритм расчета основан на методе Монте-Карло [13] — генерации большого числа статистических испытаний. Оценка вероятностей может быть проведена на основе метода Монте-Карло или с использованием аппроксимаций получаемых выборок.

Для получения значений вероятностей хрупкого разрушения и течи были составлены две программы: для проведения численного моделирования методом Монте-Карло и для обработки накопленных статистических данных.

В результате численного моделирования подроста трещины и расчета КИН к моменту окончания эксплуатации облицовки (30 лет) накаплива-

ется массив данных, состоящий из значений расчетных параметров (размеры дефекта, КИН) и значений предельных параметров (вязкость разрушения).

Программа обработки данных на основе имеющейся выборки в соответствии с известными статистическими тестами [14] определяет теоретический закон распределения, описывающий полученные данные с наибольшей достоверностью. Значения вероятностей хрупкого разрушения и течи были определены с использованием выбранного закона распределения.

Алгоритм сбора статистических данных иллюстрирует блок-схема, приведенная на рис. 4.

Рис. 4. Алгоритм формирования базы данных в результате численного моделирования подроста дефекта и расчета КИН

Основные этапы сбора статистических данных следующие.

1. Получение значений НДС в облицовке корпуса на основе расчетов с учетом стационарных и циклических нагрузок в процессе эксплуатации. 2. Задание числа итераций расчета (статистических испытаний) $N_{\mu\tau}$, которое позволит сформировать статистические данные для определения законов их распределения.

3. Создание случайной выборки величин {*K*_{IC}, *a_i*, *c_i*} *i*-й итерации на основе законов распределения механических свойств материала облицовки и распределения размеров дефектов.

4. Определение величины подроста дефекта на момент окончания срока эксплуатации корпуса (30 лет).

5. Сравнение размеров трещины с толщиной стенки, сравнение действующих КИН с вязкостью разрушения.

6. В случае превышения указанными величинами предельных значений фиксируется хрупкое разрушение или течь, соответствующий счетчик (*N*_{хр} или *N*_т) увеличивается на единицу.

7. Запись в файл исходных данных и конечных результатов параметров, задаваемых в виде случайных величин.

8. Выполнение пп. 3–7 заданное число итераций *N*_{ит}, в которых определяется число течей *N*_т и хрупкого разрушения *N*_{хр}, а также формируется массив значений КИН, глубины дефекта и вязкости разрушения.

В соответствии с методом Монте-Карло вероятности хрупкого разрушения $P_{\rm xp}$ и течи $P_{\rm T}$ облицовки могут быть определены в виде отношений:

$$P_{\rm xp} = \frac{N_{\rm xp}}{N_{\rm MT}}; \quad P_{\rm T} = \frac{N_{\rm T}}{N_{\rm MT}}.$$

В связи с ожидаемо низким уровнем вероятностей $P_{\rm xp}$ и $P_{\rm T}$ определяли с помощью метода аппроксимаций (закона распределения по имеющейся частичной выборке, полученной в результате статистического моделирования). Зная плотность распределения случайной величины и ее предельное значение, можно вычислить эту вероятность (рис. 5).

Оценка вероятностей хрупкого разрушения методом аппроксимаций заключается в моделировании законов распределения КИН и вязкости разрушения и расчете вероятностей превышения первым последнего [15]. Аналогичным образом оценивалась вероятность течи.

Для реализации разрушения (или течи) необходимо выполнение условия $K_{\rm I} \ge K_{\rm IC}$ (или $a \ge s$, где s — толщина стенки металлоконструкции) или $K_{\rm IC} - K_{\rm I} \le 0$ (или $s/a \le 1$). Для результатов расчета, полученных в каждой итерации с использованием метода Монте-Карло, проводится вычисление значений $K_{\rm IC} - K_{\rm I}$ и s/a.

Рис. 5. Пояснение к методу аппроксимаций

На основе полученной частичной выборки подбирается наиболее подходящий аппроксимирующий закон распределений (например, для расчета вероятностей течи — логнормальный закон, как на рис. 6, *a*). Используя известное распределение, оценивают вероятности $P(K_{IC} - K_I \le 0)$ и $P(s/a \le 1)$.

Получаемые значения вероятностей следует уточнить с учетом того, что в облицовке корпуса могут остаться не выявленные (или пропущенные) дефекты, размеры которых позволят им стать сквозными до окончания срока эксплуатации корпуса (рис. 6, *б*).

Рис. 6. Пояснение к методике учета вероятностей пропуска дефектов для случая расчета вероятностей течи

Уточненные таким образом вероятности хрупкого разрушения и течи определены в виде

$$P_{\rm xp} = P_{\rm xp0} P_{\rm xp.ge\varphi},$$
$$P_{\rm T} = P_{\rm T0} P_{\rm T.ge\varphi},$$

где P_{xp} , P_{T} — полные вероятности хрупкого разрушения и течи; P_{xp0} , P_{T0} — вероятности хрупкого разрушения и течи без учета пропуска дефектов; $P_{xp.de\phi}$, $P_{T.de\phi}$ — вероятности пропуска дефектов во время дефектоскопии.

Оценки вероятностей хрупкого разрушения и течи металлической облицовки корпуса РУ БРЕСТ. Полученные результаты приведены в табл. 2. Суммарная вероятность отказа определялась в виде суммы вероятностей хрупкого разрушения и течи.

Таблица 2

Наименование участка	Вероятность хрупкого разру- шения <i>Р</i> _{хр} , 1/год	Вероятность течи Р _т , 1/год	Суммарная вероятность отказа Р _{отказΣ} , 1/год
Верхняя часть централь- ной оболочки	$< 1 \cdot 10^{-16}$	$< 1 \cdot 10^{-16}$	$< 1 \cdot 10^{-16}$
Средняя часть централь- ной оболочки	$2,54 \cdot 10^{-15}$	$< 1 \cdot 10^{-16}$	2,54 · 10 ⁻¹⁵
Нижняя часть централь- ной оболочки	7,88 \cdot 10 ⁻¹⁶	$< 1 \cdot 10^{-16}$	7 , 88 · 10 ⁻¹⁶
Периферийная оболочка	$< 1 \cdot 10^{-16}$	$< 1 \cdot 10^{-16}$	$< 1 \cdot 10^{-16}$
Верхняя проходка	$2,73 \cdot 10^{-14}$	$1,3 \cdot 10^{-9}$	$1,3 \cdot 10^{-9}$
Нижняя проходка	$< 1 \cdot 10^{-16}$	$< 1 \cdot 10^{-16}$	$< 1 \cdot 10^{-16}$
Для всей металлокон- струкции оболочек кор- пуса	3,06 · 10 ⁻¹⁴	$1,3 \cdot 10^{-9}$	$1,3 \cdot 10^{-9}$

Результаты оценки вероятностей хрупкого разрушения и течи в металлической облицовке на 30-й год эксплуатации

Результаты демонстрируют, что оцененная вероятность хрупкого разрушения имеет максимальное значение для верхней проходки. Такой результат обусловлен тем, что в указанной части облицовки корпуса согласно расчетам НДС достигаются максимальные напряжения и максимальные изменения напряжений в процессе циклического нагружения. Вероятность течи верхней проходки оказалась значительно выше, чем вероятность хрупкого разрушения. Следовательно, в предлагаемых условиях материал облицовки имеет значительно большие запасы до хрупкого разрушения, чем до течи. Поскольку в корпусе реактора предусмотрены бетонные слои, которые потенциально способны локализовать протечки теплоносителя, работоспособность корпуса может сохраниться в период 30-летней эксплуатации.

На следующем этапе развития технологии планируется рассмотрение моделей разрушения бетонных материалов, входящих в состав ММБК реактора.

Заключение. Предложена технология оценки надежности металлической облицовки корпуса РУ БРЕСТ-ОД-300 с точки зрения сопротивления хрупкому разрушению и возникновению течи. Оценка основана на численном моделировании подроста постулированного дефекта с учетом вероятностей пропусков дефектов в процессе контроля и вычислении характеристик прочности в процессе эксплуатации конструкции с использованием КЭ моделей. Разработанная технология может быть применена к ММБК других РУ.

Выявлено, что наиболее опасным участком облицовки корпуса РУ БРЕСТ-ОД-300 является верхняя проходка, соединяющая полости теплоносителя над активной зоной и в шахтах парогенераторов. Значение вероятностей течи в области верхних проходок составляет 1,3·10⁻⁹ 1/год при существенно меньшей вероятности хрупкого разрушения.

ЛИТЕРАТУРА

[1] Димитриенко Ю.И., Юрин Ю.В., Шиверский Е.А. Прогнозирование долговечности и надежности элементов конструкций высокого давления. Ч. 2. Численное статистическое моделирование. Известия высших учебных заведений. Машиностроение, 2013, № 12, с. 10–18. DOI: 10.18698/0536-1044-2013-12-10-18

[2] Perfilov V.A., Oreshkin D.V., Zemlyanushnov D.Yu. Concrete strength and crack resistance control. *Procedia Eng.*, 2016, vol. 150, pp. 1474–1478. DOI: 10.1016/j.proeng.2016.07.085

[3] Yang X.L., Zhou T., Li W.T. Reliability analysis of tunnel roof in layered Hoek — Brown rock masses. *Comput. Geotech.*, 2018, vol. 104, pp. 302–309.

DOI: 10.1016/j.compgeo.2017.12.007

[4] Лемехов В.В., Надточий В.И., Пикалов А.А. и др. Технические решения по корпусу реакторного блока РУ БРЕСТ-ОД-300. М., НИКИЭТ, 2013, с. 24–26.

[5] Бозин С.Н., Ершов Н.С., Лемехов В.В. Промышленное освоение биметаллического листа для изготовления внутренней оболочки железобетонного корпуса парогенерирующего блока БРЕСТ-ОД-300. М., НИКИЭТ, 2012, с. 194–195.

[6] Грунин В.В., Модестов В.С., Лукин А.В. и др. Применение нелинейных моделей бетона для оценки несущей способности конструкции корпуса блока реакторного при воздействии высоких температур. *Неделя науки СПбПУ. Мат. науч. форума с междунар. участием.* СПб., СПбПУ, 2016, с. 293–296.

[7] Abaqus 6.13 Theory Guide. *dsk.ippt.pan.pl: веб-сайт*. URL: http://dsk.ippt.pan.pl/docs/abaqus/v6.13/books/stm/ default.htm?startat=ch07s01atr01.html (дата обращения: 15.04.2019)

[8] Партон В.З., Морозов Е.М. Механика упругопластического разрушения. М., Наука, 1985.

[9] НП-084–15. Правила контроля основного металла, сварных соединений и наплавленных поверхностей при эксплуатации оборудования, трубопроводов и других элементов атомных станций. М., Федеральная служба по экологическому, технологическому и атомному надзору, 2016.

[10] Шарый Н.В., Семишкин В.П., Пиминов В.А. и др. Прочность основного оборудования и трубопроводов реакторных установок ВВЭР. М., ИздАТ, 2004.

[11] РБ-100–15. Рекомендации по порядку выполнения анализа надежности систем и элементов атомных станций, важных для безопасности, и их функций. М., Ростехнадзор, 2015.

[12] Мастицкий С.Э., Шитиков В.К. Статистический анализ и визуализация данных с помощью R.

URL: https://mospolytech.ru/storage/ b53b3a3d6ab90ce0268229151c9bde11/files/ Mastitsky_and_Shitikov_2014.pdf (дата обращения: 15.04.2019).

[13] Соболь С.М. Численные методы Монте-Карло. М., Наука, 1973.

[14] Шипунов А.Б., Балдин Е.М., Волкова П.А. и др. Наглядная статистика. Используем R. M., ДМК Пресс, 2012.

[15] ПНАЭ Г-002–86. Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок. М., Энергоатомиздат, 1989.

Солонин Владимир Иванович — д-р техн. наук, профессор кафедры «Ядерные реакторы и установки» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Терехин Антон Николаевич — аспирант кафедры «Ядерные реакторы и установки» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1); сотрудник отдела «Вероятностные анализы безопасности и риска» АО «НИКИЭТ им. Н.А. Доллежаля» (Российская Федерация, 107140, Москва, ул. Малая Красносельская, д. 2/8).

Шиверский Евгений Александрович — канд. техн. наук, начальник отдела «Вероятностные анализы безопасности и риска» АО «НИКИЭТ им. Н.А. Доллежаля» (Российская Федерация, 107140, Москва, ул. Малая Красносельская, д. 2/8).

Просьба ссылаться на эту статью следующим образом:

Солонин В.И., Терехин А.Н., Шиверский Е.А. Оценка надежности металлической облицовки применительно к корпусу реактора БРЕСТ-ОД-300 с позиций хрупкой прочности и течи. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение, 2019, № 5, с. 119–134. DOI: 10.18698/0236-3941-2019-5-119-134

METAL LINER RELIABILITY ASSESSMENT FOR BREST-OD-300 REACTOR VESSEL ACCOUNTING FOR BRITTLE FRACTURE AND LEAKS

V.I. Solonin ¹	en7@power.bmstu.ru
A.N. Terekhin ^{1, 2}	toto-93@yandex.ru
E.A. Shiverskiy ²	shiversky@nikiet.ru

¹ Bauman Moscow State Technical University, Moscow, Russian Federation ² JSC "NIKIET named after N.A. Dollezhal", Moscow, Russian Federation

Abstract	Keywords
Multi-layer metal-concrete vessel of BREST-OD-300	Multi-layer metal-concrete vessel,
reactor comprising metal liner that covers internal	metal liner, vessel reliability,
cavities and ducts has an original design with no	probabilistic mechanical model-
known analogues. Due to this, statistical reliability	ing, brittle fracture and leak
assessment methods, based on operating or testing	
experience, are not applicable in this case. We pro-	
pose a method to assess the reliability of the reactor	
vessel liner taking into account a random nature	
of loads and mechanical properties affecting brittle	
rupture and leakage probability. The assessment	
is based on numerical simulation of postulated defects	
growth, allowance for the probability of their omis-	
sion in the control process, and calculation of	
strength characteristics during operation using finite	
element models. In our research we took into account	
such factors as lead coolant and vessel internal com-	
ponent loads, high temperatures and irradiation, low	
cycle loads. The results of method application re-	
vealed the most vulnerable areas of the liner. In addi-	
tion, findings of research show a high level of reliabil-	
ity of the metal liner of BREST-OD-300 reactor vessel,	Received 16.01.2019
due to low probabilities of brittle fracture and leaks	© Author(s), 2019

REFERENCES

[1] Dimitrienko Yu.I., Yurin Yu.V., Shiverskiy E.A. Prediction of durability and reliability of high-pressure structural elements. Part 2. Computational statistical modeling. *Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie* [Proceedings of Higher Educational Institutions. Machine Building], 2013, no. 12, pp. 10–18 (in Russ.). DOI: 10.18698/0536-1044-2013-12-10-18

[2] Perfilov V.A., Oreshkin D.V., Zemlyanushnov D.Yu. Concrete strength and crack resistance control. *Procedia Eng.*, 2016, vol. 150, pp. 1474–1478. DOI: 10.1016/j.proeng.2016.07.085

[3] Yang X.L., Zhou T., Li W.T. Reliability analysis of tunnel roof in layered Hoek — Brown rock masses. *Comput. Geotech.*, 2018, vol. 104, pp. 302–309. DOI: 10.1016/j.compgeo.2017.12.007

[4] Lemekhov V.V., Nadtochiy V.I., Pikalov A.A., et al. Tekhnicheskie resheniya po korpusu reaktornogo bloka RU BREST-OD-300 [Technical solutions on RU BREST-OD-300 reactor block vessel]. Moscow, NIKIET Publ., 2013, pp. 24–26.

[5] Bozin S.N., Ershov N.S., Lemekhov V.V. Promyshlennoe osvoenie bimetallicheskogo lista dlya izgotovleniya vnutrenney obolochki zhelezobetonnogo korpusa parogeneriruyushchego bloka BREST-OD-300 [Commercial exploitation of bimetal sheet for production of inner shell of reinforced concrete vessel of BREST-OD-300 steamgeneration unit]. Moscow, NIKIET Publ., 2012, pp. 194–195.

[6] Grunin V.V., Modestov V.S., Lukin A.V., et al. Primenenie nelineynykh modeley betona dlya otsenki nesushchey sposobnosti konstruktsii korpusa bloka reaktornogo pri vozdeystvii vysokikh temperature [Application of nonlinear concrete models for assessment bearing capacity of reactor block vessel at high temperatures]. *Nedelya nauki SPbPU. Mat. nauch. foruma s mezhdunar. uchastiem* [SPbPU Science Week. Proc. Sc. Meeting with Int. Participation]. St. Petersburg, SPbPU Publ., 2016, pp. 293–296 (in Russ.).

[7] Abaqus 6.13 Theory Guide. *dsk.ippt.pan.pl: website*. Available at: http://dsk.ippt.pan.pl/docs/abaqus/v6.13/books/stm/ default.htm?startat=ch07s01atr01.html (accessed: 15.04.2019)

[8] Parton V.Z., Morozov E.M. Mekhanika uprugoplasticheskogo razrusheniya [Mechanics of elastic-plastic fracture]. Moscow, Nauka Publ., 1985.

[9] NP-084–15. Pravila kontrolya osnovnogo metalla, svarnykh soedineniy i naplavlennykh poverkhnostey pri ekspluatatsii oborudovaniya, truboprovodov i drugikh elementov atomnykh stantsiy [NP-084–15. Control regulations for main metal, welded junctions and fused surfaces at exploitation of equipment, pipelines and other nuclear plant elements]. Moscow, Federal'naya sluzhba po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru Publ., 2016.

[10] Sharyy N.V., Semishkin V.P., Piminov V.A., et al. Prochnost' osnovnogo oborudovaniya i truboprovodov reaktornykh ustanovok VVER [Strength of main equipment and pipelines of reactor facilities]. Moscow, IzdAT Publ., 2004.

[11] RB-100–15. Rekomendatsii po poryadku vypolneniya analiza nadezhnosti sistem i elementov atomnykh stantsiy, vazhnykh dlya bezopasnosti, i ikh funktsiy [RB-100–15. Guidelines on run sequence of reliability and functional analysis for safety-important systems and elements of nuclear plants]. Moscow, Rostekhnadzor Publ., 2015.

[12] Mastitskiy S.E., Shitikov V.K. Statisticheskiy analiz i vizualizatsiya dannykh s pomoshch'yu R [Statistical analysis and visualization of data by means of R] (in Russ.).

Available at: https://mospolytech.ru/storage/b53b3a3d6ab90ce0268229151c9bde11/ files/Mastitsky_and_Shitikov_2014.pdf (accessed: 15.04.2019).

[13] Sobol' S.M. Chislennye metody Monte-Karlo [Numerical methods of Monte-Carlo]. Moscow, Nauka Publ., 1973. [14] Shipunov A.B., Baldin E.M., Volkova P.A., et al. Naglyadnaya statistika. Ispol'zuem R [Vivid statistics. Using R]. Moscow, DMK Press Publ., 2012.

[15] PNAE G-002–86. Normy rascheta na prochnosť oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok [PNAE G-002–86. Strength calculation code for equipment and pipelines of atomic energy plants]. Moscow, Energoatomizdat Publ., 1989.

Solonin V.I. — Dr. Sc. (Eng.), Professor, Department Nuclear Reactors and Power Plants, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Terekhin A.N. — Post-Graduate Student, Department Nuclear Reactors and Power Plants, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation); Employee of Department of Probabilistic Safety and Risk Analysis, JSC "NIKIET named after N.A. Dollezhal" (Malaya Krasnoselskaya ul. 2/8, Moscow, 107140 Russian Federation).

Shiverskiy E.A. — Cand. Sc. (Eng.), Head of Department of Probabilistic safety and Risk Analysis, JSC "NIKIET named after N.A. Dollezhal" (Malaya Krasnoselskaya ul. 2/8, Moscow, 107140 Russian Federation).

Please cite this article in English as:

Solonin V.I., Terekhin A.N., Shiverskiy E.A. Metal liner reliability assessment for BREST-OD-300 reactor vessel accounting for brittle fracture and leaks. *Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering*, 2019, no. 5, pp. 119–134 (in Russ.). DOI: 10.18698/0236-3941-2019-5-119-134