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Abstract Keywords 
The task of studying the behavior of various struc-
tures under the influence of intense pulsed (shock) 
loads that arise during the operation of many mod-
ern structures, machines and devices remains rele-
vant for many years. One of the stages of this study 
is to find the values of the natural frequencies  
of vibrations and design parameters that determine 
these values. To find the natural frequencies of 
oscillations of the body, which are four flanges 
connected by cylindrical shells, the finite element 
method and analytical solutions were used. An 
analysis of experimental studies. Determination of 
natural frequencies values and design parameters 
determining these values will allow evaluating the 
response of the structure to the loads acting during 
its operation, and making corrections to the struc-
ture that change the response of the structure, as 
well as will help to more accurately select the instal-
lation sites of piezoelectric accelerometers for  
recording drums accelerations 
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Introduction. In these works [1–4] the experience of using modal analysis on 
the basis of FEM (finite element method) in comparison with experimental data 
for verification of computational models, as well as for identification of natural 
frequencies and waveforms of different structures is presented. The main 
disadvantage of these works is that the computational and experimental studies 
are given without determining the parameters affecting the eigenfrequencies and 
shapes of the structure oscillations, which in some problems can be of practical 
interest. In shock [5] and vibro-shock tests of structures, the practical interest is 
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to assess the possibility of influencing the reaction of the structure under 
mechanical impact, that is, to determine the parameters of the structure 
affecting its reaction. This paper is dedicted to this issues.  

 Object of research. The body was chosen as the object of research (Fig. 1), 
which has practical interest in shock and vibration tests of structures. Corpus 
made of aluminum alloy D16 (Д16) with mechanical characteristics: density 

2640 kg/m3, Young’s module 110.72 10 PaЕ , Poisson’s ratio 0.33 
[6–9]. Steel threaded bushings are screwed into the holes. Overall dimensions of 
the case: radius of the circumscribed circle 290 mm, length 540 mm.  

Fig. 1. 3D body model 
 
As seen in Fig. 1, the housing is a structure consisting of octagonal rein-

forcing flanges connected by cylindrical shells with rectangular windows. Two 
types of reinforcing flanges are used in the casing, differing in the magnitude 
of the inner diameter, one flange has an inner diameter d = 472 mm (flange 
No. 1), and three — d = 427 mm (flange No. 2). Flange thickness h = 35 mm. 

The objective of the study is to determine the values of the natural fre-
quencies of oscillations and the parameters of the case, affecting these val-
ues. The first eight frequencies of the body natural vibrations were deter-
mined.  

Computational studies of the natural frequencies of the body. We will 
determine the natural frequencies of the case using the FEM of the APM finite 
element analysis package (registration number No. 330 of the certification  
certificate of the APM Structure 3D software, © STC APM) [10].  
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The calculation was carried out using the module for calculating the natu-
ral frequencies, with free boundary conditions of the case. 

In the first calculations, the impact of accounting for the presence of 
threaded bushings, holes for threaded bushings, chamfers and roundings on the 
natural frequencies of the housing was evaluated. The difference in the values of 
the natural frequencies of oscillations of the housing without holes for threaded 
bushings, chamfers and fillets and the housing with bushings, chamfers and 
fillets was not more than 6 %. Taking into account the insignificance of the 
difference in frequencies, further calculations were carried out without taking 
into account the presence of holes for threaded bushings, chamfers and fillets, 
which significantly reduced the requirements for computing resources. The 
finite element mesh was generated from hexagonal elements with an edge size of 
10 mm. As a result of mesh generation, the model was divided into 44621 
elements. After the grid was created, its quality was assessed, as a result of which 
it was determined that the finite element model consists mainly of 20 nodal 
hexagonal elements HEX20, which is an acceptable result. 

The values of the first eight eigenfrequencies of the case calculated using the 
FEM are given in Table 1 (second column). In Fig. 2–8 show the vibration 
modes of the case at these frequencies. 

From the above figures it follows that one part of the natural vibration 
frequencies of the body is determined by the vibrations of one of its elements, 
for example, one of the flanges (Fig. 2–5, 7, 8), while the other body elements are 
practically not deformed. The other part of the frequencies of natural vibrations 
is determined by the vibrations of several elements of the body (Fig. 6). 

Finding body parameters that determine the values of the frequencies  
of natural vibrations. To find the parameters that determine the eigenfrequencies 
of the vibration of the structure under consideration, we replace its structural 
elements with elements that are simpler in form, for which analytical 
dependencies are found that determine the natural vibration frequencies, such  
as circular rings, square and round plates, and a cylindrical shell. We begin our 
consideration with circular rings. As the outer diameter of the ring, we take  
the average value of the diameter of the circumscribed circle and the diameter  
of the inscribed circle in the octagon. Thus, the rings have an outer diameter  
D = 550 mm, inner diameters d = 472 mm (the ring No. 1 for the flange No. 1) 
and d = 427 mm (the ring No. 2 for the flange No. 2), thickness h = 35 mm.  

It is known [11] that a circular ring can perform several types of vibrations: 
tensile-compression vibrations, torsional vibrations, bending vibrations in the 
plane of the ring and bending vibrations consisting of displacements 
perpendicular to the plane of the ring and torsion. 
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Fig. 2. f = 463.93 Hz Fig. 3. f = 505.58 Hz 

  

Fig. 4. f = 843.78 Hz Fig. 5. f  = 908.77 Hz 

  
Fig. 6. f = 1016 Hz Fig. 7. f = 1074.3 Hz 
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The vibrational frequencies of tension-
compression are determined, according  
to [11], by the formula 

             
2tens-comp = 1 ,    

2
0,1, 2, 3, ...,

i
af i

r
i

    (1) 

where a E  is sound velocity in the 
material of the ring; r  is radius of the 
center line of the ring; E is elastic module; 

 is density, i is the number of half-waves 
located in a circle. 

Torsional vibrations of the ring are determined according to [11], by the 
formula  

 2tors  = 1 ,     0,1, 2, 3, ...,
2

x
i

p

a Jf i i
r J

 (2) 

where 
3( )

24x
D d hJ  is the moment of inertia of the cross section relative to 

its main axis parallel to the plane of the ring; 
3( )

96z
D d hJ  is the moment of 

inertia of the cross section relative to its main axis perpendicular to the plane 
of the ring; pJ  is the polar moment defined as .p x zJ J J   

Bending vibrations in the plane of the ring are determined according to 
[11], by the formula 

 
22 2

bend1 2 2

1
  = ,    2, 3, ...,

2 1
z

i
i ia Jf i

r Sr i
  (3) 

where 
2

D dS h  is ring cross-section area. 

Bending vibrations, including both displacements at right angles to the 
plane of the ring and torsion, are determined according to [11] by the formula 

 
22 2

bend2 2 2

1
 = , 2, 3, ...,

2 1
x

i
i ia Jf i

r Sr i
 (4) 

where   is Poisson’s ratio.  

Fig. 8. f = 1081.5 Hz 
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The calculations performed by formulas (1)–(4) showed that the lowest 
vibrational frequencies of the rings are determined by the first two for the ring 
No. 1 and the first for the ring No. 2 forms of bending vibrations in the plane of 
the ring and the first forms of bending vibrations consisting of displacements 
perpendicular to the plane of the ring (334, 385, 1088 Hz is the ring No. 1; 366, 
664 Hz is the ring No. 2). 

Oscillations of flanges can also be considered as oscillations of plates with 
edges that are free along the entire contour. The natural frequency of the plate is 
determined [11, 12] by the formula 

 sylin
plate 2

1 ,
2

D
f

hr
 (5) 

where 
3

sylin 212 1
EhD  is the bending stiffness of the plate, h is the plate 

thickness, r is the characteristic plate size (radius for a round plate, side size for a 
square plate),  is a constant depending on the shape of the vibrations. For a free 

round plate of radius 550 427 244.2
4

r mm and h = 35 mm (flange No. 2) 

and the mode of vibration with two nodal diameters (n = 2) and without nodal 
circles (s = 0)  = 5.251, and respectively the oscillation frequency is 

round plate 783f Hz round plate( 715f Hz for the flange No. 1 550 472
4

r  

255.5  mm, h = 35 mm). 
For a square plate with free edges, a side equal to r = 488.4 mm and  

h = 35 mm (flange No. 2) and waveforms with two nodal lines passing through 
the midpoints of the sides  = 14.1, respectively, the oscillation frequency is 

square plate 526f Hz ( square plate 480f  Hz for the flange No. 1 at r = 511 mm 
and h = 35 mm). 

Oscillations of the body can be considered as oscillations of a cylindrical 
shell. The frequencies of natural radial vibrations of the shell for the case  
of one half-wave n = 1 along its length can be calculated by the formula  
V.E. Breslavsky [13] 

 
42 2 2 2

radial vib. 4 2 2 4

11 ,    2, 3, ...,
2 1 2

i
k iBf i

mr i i
 (6) 

2 ;
1

EB  ;r
l

 
2

2 ,
12

k
r
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where i is the number of nodal lines parallel to the generatrix; 0( ) 2D d  
17,5 mm   is the shell thickness; 0D  is the outer diameter of the shell;  

m  is the mass of the shell element; 0( ) 4 2 224 mmr D d is the 
radius of the shell; l = 540 mm is the length of the shell. 

The lowest frequency of radial vibrations of the shell (i = 2, n = 1) is 
radial vibf  = 1147 Hz.  

The calculation results by formulas (3)–(6) are summarized in column 5 of 
the Table 1. The obtained frequencies are located in those rows of the Tab. 1 for 
which the waveform shown in Fig. 2–8, is closest to the form of vibrations of the 
element in question. 

As follows from the table, the frequencies of the body’s own vibrations 
obtained by the FEM “corresponding” to the forms of bending vibrations in the 
plane of the ring quite well coincide with analytical solutions. This can be 
explained as follows. The presence of a cylindrical shell attached to the flange 
can be taken into account by increasing the thickness h of the ring. In 
accordance with (3), this does not lead to a change in the oscillation frequency, 
since the relation ,zJ S  will remain unchanged.  

The natural frequencies of the body, obtained by the FEM, “corresponding” 
to the forms of bending vibrations from the plane of the ring significantly exceed 
the results of the analytical solution (4), especially on the first forms of vibration. 
This can be explained by the fact that the cylindrical part of the housing for the 
flange acts as a boundary condition, preventing the movement of the sections of 
the flange in the direction perpendicular to its plane. In those cases when these 
boundary conditions play a more important role in determining the proper 
form of oscillations, the differences are more significant.  

Similar considerations can be made when comparing the frequencies of the 
natural vibrations of the body obtained by the FEM and the natural frequencies 
of the plates and the cylindrical shell. 

Let us analyze the dependence of the frequencies obtained according to  
(3)–(6) on the parameters of the housing design. To do this, we rewrite 
formulas (3)–(6) in a form that reveals the dependence of the obtained 
frequency value on the case parameters. These are body materials, values 
describing flanges: external (D) and internal (d) diameters, flange thicknesses 
(h), and quantities describing a cylindrical shell: external (D) and internal (d) 
diameters, body length (l). Formulas (3)–(6), respectively, will take the form 

 
22 2

bend1 2 2

12 ( )  = ,     2, 3, ...;  
1 ( )3

i
i iE D df i

i D d
 (7) 
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22 2

bend2 2 2

24 13 =  ,  2, 3, ...;
1 ( )i

i iE hf i
i D d

 (8) 

 plate 2 2
2 1 ;

( ) 12 1
h Ef

D d
 (9) 

radial vib.

422 2
00 02 2

4 20 2 0 02 4

1
4 12 41 1 ,   

2 1 1 24 4 4
2, 3, ...

if

D dD d D d i
l lE

D d D d D di i
l l

i

 

 (10) 

 From the obtained formulas it follows that all frequencies depend on the 
parameter ,E  determined by the material used. Obviously, replacing alu-
minum alloy with steel will lower frequencies by about 3 %. 

In Fig. 9 shows graphs illustrating the dependence of the frequency values 
on the selected geometric parameter of the case (other parameters are consid-
ered unchanged). Parameter change is set as a percentage of the nominal value. 
 

 

Fig. 9. Graphs of the dependence of frequencies on changes in the geometric 
parameter of the case (  is fbend1;  is fbend2;  is fplate;  is fradial vib) 
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We define the approximate sensitivity coefficients of the vibration frequency 
values to a particular parameter of the housing structure as a partial derivative of 
the corresponding formula for this parameter multiplied by the parameter value. 
The calculation results for the natural frequencies calculated by formulas (3)–(6) 
from Table 1 are given in Table 2. Sensitivity factors for rings and plates, for 
example, were determined for flange No. 1 

 Table 2 

Approximate sensitivity coefficients 

Type of vibrations Parameter 
Approximate sensitivity 

coefficient 

Bending vibrations  
in the plane of the ring (3) 

2
D d  9.86 

h 0 
r 3 

Bending vibrations  
perpendicular  
to the plane of the ring (4) 

2
D d  0 

h 9.5 
R –2.6 

Vibrations of planes (5) 
h 13.7 
r –1.9 

Vibrations of a cylindrical 
shell (6) 

 44.1 
l –2.8 
r 0.8 

 
From Fig. 9 and Table 2 it follows that: 
– a change in the value of the inner (b) and outer (a) diameter of the rings to 

a greater extent affects the frequency of bending vibrations in the plane of the 
ring and the frequency of radial vibrations of the cylindrical shell; 

– frequencies of bending vibrations perpendicular to the plane of the ring 
and plate vibrations linearly depend on the thickness (c) of the flanges; 

– the length of the radial vibrations of the cylindrical shell is noticeably 
affected by its length (d). 

It should be noticed that the frequencies of elastic bodies determined by 
dependences (1)–(6) also depend on parameter i. That is, a change in one size of 
a housing element will lead to a change in several frequencies of natural 
vibrations.  
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Experimental studies of the frequencies of natural vibrations of the body. 
For experimental determination of natural frequencies, the body was hung on a 
flexible suspension. The case was loaded by mechanical shock using a pendulum 
installation. Рх , Рz are points of application of the load (the index indicates the 
direction of the force relative to the axes of the housing). The load application 
points are shown in Fig. 10. 

Fig. 10. Places of application of the load and installation of piezoaccelerometers 
 
For registration of accelerations, 8 AP11 piezoelectric accelerometers 

(conversion coefficient (11 ± 4) pCl/g, amplitude of recorded accelerations up to 
5000 g, operating frequency range 2–15 000 Hz) on VGO-1 (ВГО-1) adhesive 
sealant were installed on the case. In Fig. 10 shows the installation locations of 
piezo-accelerometers with the symbols 1X, 2Z, 3XY, 4Y are on flange No. 2 and 
5X, 6Z, 7Y, 8XY are on flange No. 1 (the letter indicates the direction of the 
sensitivity axis of the piezoaccelerometer relative to the axes of the housing). 

To register the signal from piezoelectric accelerometers, a signal amplifier 
was used (the nominal limit of charge conversion Qv = 10 · 104 pCl, the nominal 
conversion coefficients K are from 0.01 mV/pCl to 10 V/pCl, the upper cutoff 
frequency is 10 kHz) and the ADC RSRC 2004 (measurement limits of the input 
voltage ± 1, ± 5 V, the maximum sampling frequency per channel 125 kHz, the 
number of bits of the ADC-14).  

As a result of the tests, four loads were carried out: two along the X axis 
(experiments No. 1, 2) and two along the Z axis (experiment No. 3, 4). The 
signals from piezoelectric accelerometers were recorded with an upper cutoff 
frequency fup = 10 kHz. After registration, in order to eliminate the industrial 
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frequency of 50 Hz, the signals were filtered with a lower cutoff frequency 
 f low dig = 50 Hz with a fourth-order Butterworth digital filter.  

A typical shape of the signal recorded by a piezoaccelerometer is shown in 
Fig. 11. The spectral density of this signal is shown in Fig. 12. The signals of 
piezoelectric accelerometers have a duration of about 50 ms, which provides a 
frequency step of 6–15 Hz. 

Fig. 11. Schedule of recorded shock acceleration with a 8XY piezoaccelerometer  
in experiment No. 2 without digital filtering 

Fig. 12. Spectral density (SP) graph of the recorded shock acceleration 
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The values of the natural frequencies were determined from the spectral 
density graphs of the signals obtained using the fast Fourier transform (FFT) 
as local extrema [15]. The results of determining the natural frequencies of the 
case are given in Table 3.  

Table 3 

The values of the oscillation frequencies determined from the peaks  
of the spectral graphs the density of the signals recorded by piezoelectric  

accelerometers 

Flange No. 1 Flange No. 2 

5X 6Z 7Y 8XY 1X 2Z 3XY 4Y 

459 462 459 462 459 462 502 504 459 454 459 460 500 450 459 462 

459 459 450 459 454 459 450 501 450 459 450 459 450 500 450 459 

790 800 790 801 801 800 801 740 801 801 801  875 876 801 801 

  800 794 739 794 739  801 794   740 878 801 794 

1078 1074 1078 1074 1078 1074 1078 1074    1080     

1080 1073 1080 1073 1080 1073 1080 1073    1073     

 

In the Table 3 the following notation is accepted: frequencies obtained in 
different experiments are located in a square according to the diagram 

. Bold letters indicate the frequencies whose peak am-
plitude corresponds to the condition A > 0.1Amax, where Amax is the maximum 
peak amplitude.  

The italics indicate the frequencies the amplitude of the peak at which 
meets the condition A < 0.1Amax.  

The frequency ranges defined in Table 3 are also given in Table 1  
(column 6) in the corresponding rows. 

To assess the compliance of the experimental and obtained by the FEM 
calculation, we will compare them using the formula 

100 %,E C

E

f f
f

 

where Cf  is natural frequencies of the case obtained using the FEM; Ef  is the 
average value of the peaks of the spectrum. 

The calculation results are given in Table 4.  
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 Table 4 

Comparison of experimental and calculated data 

No. ,Cf  Hz ,Ef  Hz ,  % 

1 463.93 464 0.01 
2 505.58 464 8.96 
3 843.78 798 5.73 
4 908.77 798 13.88 
5 1016 1076 5.57 
6 1074.3 1076 0.15 
7 1074.4 1076 0.14 
8 1081.5 1076 0.51 

 
From the Table 4, fairly good convergence of the experimental and 

calculated data follows. 
Analyzing the obtained experimental data, the following can be noted. 

Considering that piezoaccelerometers well record vibration modes at which the 
cross-sectional displacement coincides with the sensitivity axis of piezoelectric 
accelerometers, 1X, 3XY, 4Y, 5X, 7Y, 8XY piezoaccelerometers well record 
vibrations “corresponding” to bending vibrations in the plane of the ring 
(frequencies 450–501, 1073–1080 Hz for flange No. 1; frequencies 740–878 Hz 
for flange No. 2), since in this case the displacements of the sections are radial in 
nature and coincide with the sensitivity axes of these sensors.  

In other cases, when the sensitivity axis of the piezoelectric accelerometer is 
perpendicular to the displacement of the cross sections for a certain waveform, 
no peaks were noted on the graphs of the spectral density of the acceleration 
signal at a frequency corresponding to this waveform. 

Experimental studies confirm the results of FEM calculations. 
Conclusion. Using the FEM to determine the natural frequencies of 

oscillations of complex structures allows you to get the most accurate solutions, 
although it requires significant computational resources. The use of analytical 
solutions when replacing elements of a real structure with simpler elements 
allows one to find those design parameters that determine the values of the 
corresponding natural frequencies of the structure’s vibrations, as well as assess 
the effect of changes in these parameters on the value of the natural frequency of 
vibrations. This will help in the design of the structure, the reaction of which 
should have a given spectral composition. 

When experimentally determining the natural frequencies of oscillations 
using piezoaccelerometers, in order to increase the accuracy of the results 
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obtained, it is necessary to strive for the sensitivity axes of the used sensors to 
coincide with the displacements of the structural elements on the studied modes 
of vibration, and also to ensure that the installed piezoaccelerometers do not fall 
into the nodal points of their own waveforms. 

Translated by K. Zykova 
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