МЕТОДИКА ЧИСЛЕННОГО ИНТЕГРИРОВАНИЯ ТРЕХМЕРНЫХ УРАВНЕНИЙ ЛАМИНАРНО-ТУРБУЛЕНТНОГО ПОГРАНИЧНОГО СЛОЯ НА СФЕРИЧЕСКИ ЗАТУПЛЕННОМ КРУГОВОМ КОНУСЕ МАЛОГО УДЛИНЕНИЯ

В.В. Горский

УДК 533.16

vpk@vpk.npomash.ru

АО «ВПК «НПО машиностроения», г. Реутов, Московская обл., Российская Федерация МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация

Ключевые слова

Исследования трехмерного теплообмена и трения в настоящее время повсеместно проводятся в рамках уравнений Навье — Стокса. Для тел сложной конфигурации применение такого подхода позволяет существенно повысить качество исследований, что подтверждает обоснованность использования на практике данной сложной вычислительной процедуры. Для тел простой геометрической формы, широко применяемых в технике для высокотемпературных элементов конструкции высокоэнергетических устройств, уравнения Навье — Стокса по целому ряду характеристик уступают уравнениям ламинарно-турбулентного пограничного слоя. В литературе отсутствует описание экспериментальных данных по теплообмену в зонах затупления высокотемпературных элементов конструкции типа затупленного конуса при экстремально высоких значениях числа Рейнольдса. В настоящее время получено решение этой задачи в рамках уравнений пограничного слоя. Серьезные проблемы возникают при использовании уравнений Навье — Стокса в задачах, в которых поверхность тела видоизменяется с течением времени. Поскольку методологии строгого решения трехмерных уравнений ламинарно-турбулентного пограничного слоя не уделяется должного внимания, то разработка современной методологии решения рассматриваемой задачи представляет определенный интерес

Численный метод, пограничный слой, ламинарно-турбулентное течение, теплообмен

Поступила 16.02.2021 Принята 05.04.2021 © Автор(ы), 2022 **Введение.** Исследованию вопросов, связанных с решением трехмерных уравнений пограничного слоя, уделяли внимание лишь во второй половине прошлого века. Эти работы касались в основном ламинарного режима течения газа в пограничном слое. Обычно упоминались работы [1, 2]. Следует отметить также отечественные публикации на эту тему:

 – работу [3], в которой описаны расчетные соотношения и программы, предназначенные для интегрирования уравнений ламинарного пограничного слоя интегральным методом полос [4];

– работу [5], в которой приведены результаты систематических решений уравнений ламинарного пограничного слоя на затупленных конусах, полученных интегральным методом полос;

 монографию [6], в которой приведены результаты многолетних исследований, выполненных в рамках метода эффективной длины [7];

 монографию [8], где систематизировано математическое описание трехмерного течения газа в пограничном слое и приведены особенности решения этих уравнений.

В течение последних 25 лет на практике широко применяются численные решения, основанные на уравнениях Навье — Стокса [6, 9].

Действительно, данное направление исследований не имеет альтернативы для тел сложной конфигурации, однако для высокотемпературных фрагментов конструкции скоростных летательных аппаратов, имеющих, как правило, простую геометрическую форму, применение уравнений ламинарно-турбулентного пограничного слоя имеет целый ряд существенных преимуществ перед применением уравнений Навье — Стокса.

В связи с этим приведенные далее результаты исследований имеют определенный интерес при решении прикладных задач.

Физико-математическая постановка задачи. Общепринятая в литературе формулировка физико-математической постановки рассматриваемой задачи, включающая в себя уравнение неразрывности, тангенциальную и окружную проекции уравнения сохранения количества движения, а также уравнение сохранения энергии, имеет вид [6, 8]:

$$\left(\rho ur\right)_{s} + \left(\rho vr\right)_{v} + \left(\rho w\right)_{0} = 0, \tag{1}$$

где ρ — плотность; u, v, w — проекции вектора скорости на оси правой системы координат, образованной осями s, y и нормалью к полуплоскости, проходящей через образующую и ось симметрии тела; r — коэффициент Ламе H_3 , равный удалению поверхности конуса от его оси; $\{s, y, \phi\}$ — криволинейная система координат (ось s отсчитывается вдоль образующей конуса от точки O пересечения его поверхности вектором X, направленным вдоль его оси в сторону заднего торца; ось y отсчитывается от поверхности конуса в направлении внешней нормали, восстановленной к ней на образующей конуса; $\varphi \in (0, \pi)$ — угол, отсчитываемый от нижней вертикальной полуплоскости против хода часовой стрелки при взгляде с конца вектора X);

$$uu_{s} + vu_{y} + wu_{\varphi} / r + w^{2} \frac{r_{s}}{r} = -\frac{1}{\rho} p_{s} + \frac{1}{\rho} (\mu u_{y})_{y}, \qquad (2)$$

где $p(s, \phi)$ — давление в пограничном слое, в качестве которого рассматривается давление на поверхности конуса, полученное в рамках решения уравнений Эйлера; μ — коэффициент динамической вязкости;

$$uw_{s} + vw_{y} + ww_{\varphi}/r - uw\frac{r_{s}}{r} = -\frac{1}{\rho r}p_{\varphi} + \frac{1}{\rho}(\mu w_{y})_{y}; \qquad (3)$$

$$uh_{0,s} + vh_{0,y} + \frac{w}{r}h_{0,\phi} = \frac{1}{\rho} \left\{ \left(\frac{\mu}{\Pr} h_{0,y} \right)_{y} + \left[\mu \left(1 - \frac{1}{\Pr} \right) \left(\frac{u^{2} + w^{2}}{2} \right)_{y} \right]_{y} \right\}$$
(4)

при $\varphi = 0$, π $w(s, y) = u_{\varphi}(s, y) = h_{0,\varphi}(s, y) = 0$; при y = 0 $u(s, \varphi) = v(s, \varphi) = 0$, $h_0(s, \varphi) = h_w$; при $y = y_e$ $u(s, \varphi) = u_e(s, \varphi)$, $u(s, \varphi) = u_e(s, \varphi)$, $h_0(s, \varphi) = h_{00}$, где h — статическая энтальпия; $h_0 = h + (u^2 + w^2)/2$ — полная энтальпия; Pr — число Прандтля; h_{00} — энтальпия торможения газового потока, натекающего на конус.

Для обозначения поверхности тела далее используется термин «стенка» и индекс w; индекс e относится к условной внешней границе пограничного слоя; индексы s, y и ϕ — к частным производным функций по соответствующим координатам, измеряемым в метрах или радианах.

Вектор скорости газового потока, натекающего на конус с углом полураствора θ и углом атаки α , параллелен плоскости, проходящей через его наветренную и подветренную образующие, которым соответствуют значения координаты ϕ , равные 0 и π .

Данную трехмерную задачу будем решать в области изменения координаты $s(s_{in}, s_{end}], s_{in} = \pi/2 - \theta - 2\alpha$, так как при $s \leq s_{in}$ значения искомых функций могут быть определены путем решения двумерной задачи обтекания полусферы, выполненного с повышенной точностью.

При этом узлу на поверхности конуса с координатами s_{in} , φ соответствует равная $\arccos(\cos s_{in} \cos \alpha + \sin s_{in} \sin \alpha \cos \varphi)$ координата s_2 в двумерной задаче обтекания полусферы. Связь между тангенциальной проекцией u_2 вектора скорости в этой задаче с компонентами вектора скорости u и w в этом сечении имеет вид

$$u(s_{in}, y, \varphi) = u_2(s_2, y) \cos \varphi; \ w(s_{in}, y, \varphi) = u_2(s_2, y) \sin \varphi$$

Использование указанного подхода целесообразно не только для кругового конуса, поскольку процедура поиска решения задачи в этом случае усложняется только в области $s \leq s_{in}$.

Введем размерные функции тока $\Phi_1(s, y, \phi)$ и $\Phi_2(s, y, \phi)$, тождественно удовлетворяющие уравнению неразрывности (1):

$$\Phi_{1,y} = \rho ur, \quad \Phi_{2,y} = \rho w, \quad \Phi_{1,s} + \Phi_{2,\varphi} = -\rho vr.$$
 (5)

Перейдем от системы координат $\{s, \phi, y\}$ к системе интегральных координат $\xi = \xi(s, \phi)$ и $\eta = \eta(s, y, \phi)$ с помощью введения невязких линий тока, проходящих через узловые значения координаты ϕ в сечении $s = s_{in}$.

Для каждой линии тока введем вспомогательную интегральную координату

$$\xi_{FL}\left(s,\,\varphi_{FL}\right)=\xi_{2}\left(s_{2}\left(\varphi\right)\right)+\int_{s_{in}}^{s}\rho_{e}\,\mu_{e}\left(\sqrt{u_{e}^{2}+w_{e}^{2}}\right)r^{2}l_{s}\,ds.$$

Входящие в это выражение газодинамические функции соответствуют координатам *s* и ϕ_{FL} ,

$$\xi_2\left(s_2\left(\varphi\right)\right) = \int_0^{s_2} \rho_e \,\mu_e \,u_e \,r^2 ds$$

— построенная для полусферы в двумерной постановке интегральная функция Лиза — Дородницына; *l* — длина линии тока, которая построена с использованием распределения компонент вектора скорости на поверхности конуса, рассчитанных в рамках уравнений Эйлера.

Значения интегральной координаты $\xi = \xi(s, \phi)$ рассчитываются путем применения интерполяционной процедуры по отношению к семейству построенных вспомогательных интегральных координат $\xi_{FL}(s, \phi_{FL})$.

Введем еще одну интегральную координату Лиза — Дородницына в том же виде, что и при решении двумерной задачи обтекания полусферы:

В.В. Горский

$$\eta(s, \phi, y) = \frac{r u_e}{\sqrt{2\xi}} \int_0^y \rho \, dy'; \quad \eta_y = \frac{\rho r u_e}{\sqrt{2\xi}}.$$
(6)

Это существенно упрощает процедуры формирования граничного условия для решения трехмерной задачи при значении координаты $s = s_{in}$.

Если значение координаты *s*, соответствующее концевому сечению конуса, обозначить через s_{con} и ввести безразмерные функции тока $f_1(\xi, \eta) = \Phi_1 / \sqrt{2\xi}$, $f_2(\xi, \eta) = \Phi_2 / \sqrt{2\xi}$, то, используя соотношения (5) и (6), формулы для расчета компонент вектора скорости, частных производных этих компонент и полной энтальпии в областях изменения $[s_{b,m}, s_{con}]$ и (0, π) аргументов *s* и ϕ можно записать следующим образом:

$$\begin{split} u &= \frac{1}{\rho r} \left(f_1 \sqrt{2\xi} \right)_y = \frac{\sqrt{2\xi}}{\rho r} f_{1,\eta} \eta_y = u_e f_{1,\eta}; \\ w &= \frac{1}{\rho} \left(f_2 \sqrt{2\xi} \right)_y = \frac{\sqrt{2\xi}}{\rho} f_{2,\eta} \eta_y = r u_e f_{2,\eta}; \\ v &= -\frac{1}{\rho r} \left[\left(f_1 \sqrt{2\xi} \right)_s + \left(f_2 \sqrt{2\xi} \right)_{\varphi} \right] = \\ &= -\frac{\sqrt{2\xi}}{\rho r} \left[\left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) + \left(f_{2,\xi} \xi_{\varphi} + f_{2,\eta} \eta_{\varphi} + f_2 \frac{\xi_{\varphi}}{2\xi} \right) \right]; \\ u_s &= u_e \left[f_{1,\eta\xi} \xi_s + f_{1,\eta\eta} \eta_s + f_{1,\eta} \frac{u_{e,s}}{u_e} \right]; \\ u_\varphi &= u_e \left[f_{1,\eta\xi} \xi_{\varphi} + f_{1,\eta\eta} \eta_{\varphi} + f_{1,\eta} \frac{u_{e,\varphi}}{u_e} \right]; \\ u_\varphi &= u_e \left[f_{1,\eta\xi} \xi_{\varphi} + f_{1,\eta\eta} \eta_{\varphi} + f_{1,\eta} \frac{u_{e,\varphi}}{u_e} \right]; \\ u_y &= \frac{\rho r}{\sqrt{2\xi}} u_e^2 f_{1,\eta\eta}; \\ \frac{1}{\rho} \left(\mu u_y \right)_y &= \frac{1}{\rho} \left[\frac{\rho \mu r u_e^2}{\rho_e \mu_e \sqrt{2\xi}} f_{1,\eta\eta} \right]_{\eta} \frac{\rho r u_e}{\sqrt{2\xi}} \rho_e \mu_e = \left(c_1 f_{1,\eta\eta} \right)_{\eta} \frac{\xi_s}{2\xi} u_e^2; \\ \frac{1}{\rho} \left[\mu \left(1 - \frac{1}{\Pr} \right) \left(\frac{u^2}{2} \right)_y \right]_y = \frac{1}{\rho} \left[\mu \left(1 - \frac{1}{\Pr} \right) u u_y \right]_y = \\ &= \frac{1}{\rho} \left[\frac{\rho \mu}{\rho_e \mu_e} r \frac{u_e^3}{\sqrt{2\xi}} \left(1 - \frac{1}{\Pr} \right) f_{1,\eta} f_{1,\eta\eta} \right]_{\eta} \frac{\rho r u_e}{2\xi} \rho_e \mu_e = \\ &= \left[c_1 \left(1 - \frac{1}{\Pr} \right) f_{1,\eta} f_{1,\eta\eta} \right]_{\eta} \frac{\xi_s}{2\xi} u_e^3; \end{split}$$

Методика численного интегрирования трехмерных уравнений...

$$w_{s} = ru_{e} \left[f_{2,\eta\xi}\xi_{s} + f_{2,\eta\eta}\eta_{s} + f_{2,\eta} \left(\frac{r_{s}}{r} + \frac{u_{e,s}}{u_{e}} \right) \right];$$
$$w_{\phi} = ru_{e} \left[f_{2,\eta\xi}\xi_{\phi} + f_{2,\eta\eta}\eta_{\phi} + f_{2,\eta} \frac{u_{e,\phi}}{u_{e}} \right];$$
$$w_{y} = \rho \frac{\left(ru_{e}\right)^{2}}{\sqrt{2\xi}} f_{2,\eta\eta};$$

$$\begin{split} \frac{1}{\rho} (\mu w_y)_y &= \frac{1}{\rho} \left[\frac{\rho \mu (ru_e)^2}{\rho_e \mu_e \sqrt{2\xi}} f_{2, \eta\eta} \right]_{\eta} \frac{\rho ru_e}{\sqrt{2\xi}} \rho_e \mu_e = (c_1 f_{2, \eta\eta})_{\eta} \frac{\xi_s}{2\xi} ru_e^2; \\ \frac{1}{\rho} \left[\mu \left(1 - \frac{1}{\Pr} \right) \left(\frac{w^2}{2} \right)_y \right]_y = \frac{1}{\rho} \left[\mu \left(1 - \frac{1}{\Pr} \right) ww_y \right]_y = \\ &= \frac{1}{\rho} \left[\frac{\rho \mu}{\rho_e \mu_e} \frac{(ru_e)^3}{\sqrt{2\xi}} \left(1 - \frac{1}{\Pr} \right) f_{2, \eta} f_{2, \eta\eta} \right]_{\eta} \frac{\rho u_e r}{\sqrt{2\xi}} \rho_e \mu_e = \\ &= \left[c_1 \left(1 - \frac{1}{\Pr} \right) f_{2, \eta} f_{2, \eta\eta} \right]_{\eta} \frac{\xi_s}{2\xi} r^2 u_e^3; \\ h_{0, s} = h_{0, \xi} \xi_s + h_{0, \eta} \eta_s; \quad h_{0, \varphi} = h_{0, \xi} \xi_\varphi + h_{0, \eta} \eta_\varphi; \end{split}$$

$$h_{0,y} = h_{0,\eta}\eta_y = \frac{\rho \, r u_e}{\sqrt{2\xi}} \, h_{0,\eta};$$

$$\frac{1}{\rho} \left(\frac{\mu}{\Pr} h_{0,y} \right)_{y} = \frac{1}{\rho} \left(\frac{\rho \mu}{\rho_{e} \mu_{e} \Pr} \frac{r u_{e}}{\sqrt{2\xi}} h_{0,\eta} \right)_{\eta} \frac{\rho r u_{e}}{\sqrt{2\xi}} \rho_{e} \mu_{e} = \left(\frac{c_{1}}{\Pr} h_{0,\eta} \right)_{\eta} \frac{\xi_{s}}{2\xi} u_{e}.$$

Здесь $c_1 = \rho \mu / (\rho_e \mu_e)$ — функция Рубезина.

Если конвективные члены в уравнениях (2)–(4) обозначить соответственно через S_2 , S_3 , S_4 , то, используя формулы для расчета проекций вектора скорости, а также частные производные этих проекций и полную энтальпию, получаем следующие выражения для расчета конвективных членов:

$$\frac{S_2}{u_e^2} = f_{1,\eta} \left[f_{1,\eta\xi} \xi_s + f_{1,\eta\eta} \eta_s + f_{1,\eta} \frac{u_{e,s}}{u_e} \right] - f_{1,\eta\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta} \left(f_{1,\xi} \xi_s + f_{1,\eta} \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta} \left(f_{1,\xi} \xi_s + f_1 \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta} \left(f_{1,\xi} \xi_s + f_1 \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta} \left(f_{1,\xi} \xi_s + f_1 \eta_s + f_1 \frac{\xi_s}{2\xi} \right) - f_{1,\eta} \left(f_{1,\xi} \xi_s + f_1 \eta_s \right) + f_1 \frac{\xi_s}{2\xi} \right) - f_1 \left(f_1 \eta_s + f_1 \eta_s \right) +$$

$$\begin{split} &-f_{1,\eta\eta} \left(f_{2,\xi}\xi_{\varphi} + f_{2,\eta}\eta_{\varphi} + f_{2}\frac{\xi_{\varphi}}{2\xi} \right) + \\ &+f_{2,\eta} \left[f_{1,\eta\xi}\xi_{\varphi} + f_{1,\eta\eta}\eta_{\varphi} + f_{1,\eta}\frac{u_{e,\varphi}}{u_{e}} \right] + \left(rf_{2,\eta} \right)^{2} \frac{r_{s}}{r} = \\ &= \left[\left(f_{1,\eta}f_{1,\etas} - f_{1,s}f_{1,\eta\eta} \right) \right] + \left[\left(f_{2,\eta}f_{1,\eta\varphi} - f_{2,\varphi}f_{1,\eta\eta} \right) \right] + \\ &+ f_{1,\eta} \left[f_{1,\eta}\frac{u_{e,s}}{u_{e}} + f_{2,\eta}\frac{u_{e,\varphi}}{u_{e}} \right] - f_{1,\eta\eta} \left(f_{1}\frac{\xi_{s}}{2\xi} + f_{2}\frac{\xi_{\varphi}}{2\xi} \right) + \left(rf_{2,\eta} \right)^{2} \frac{r_{s}}{r} = \\ &= \frac{1}{\Omega_{0}} \left[f_{1,\etas}\Omega_{0}f_{1,\eta} + f_{1,\eta\varphi}\Omega_{0}f_{2,\eta} + f_{1,\eta}\left(f_{1,\eta}\Omega_{1,s} + f_{2,\eta}\Omega_{1,\varphi} \right) \right] - \\ &- \frac{1}{\Omega_{0}} f_{1,\eta\eta} \left[\left(f_{1} + f_{2}\Omega_{2,\varphi} \right) + \Omega_{0}\left(f_{1,s} + f_{2,\varphi} \right) \right] + \frac{1}{\Omega_{0}}\left(rf_{2,\eta} \right)^{2}\Omega_{2,s} = \\ &= -\frac{1}{\Omega_{0}} \left[f_{1,\eta\eta}\left(g_{1} + g_{2} \right) - f_{1,\eta}g_{3} - f_{1,\etas}g_{4} - f_{1,\eta\varphi}g_{5} - g_{6} \right]; \quad (7) \\ &- \frac{S_{3}}{ru_{e}^{2}} = f_{1,\eta} \left[f_{2,\eta\xi}\xi_{s} + f_{2,\eta\eta}\eta_{s} + f_{2,\eta}\left(\frac{r_{s}}{r} + \frac{u_{e,s}}{u_{e}} \right) \right] - \\ &- f_{2,\eta\eta}\left(f_{1,\xi}\xi_{s} + f_{1,\eta}\eta_{s} + f_{1}\frac{\xi_{s}}{2\xi} \right) - f_{2,\eta\eta}\left(f_{2,\xi}\xi_{\varphi} + f_{2,\eta}\eta_{\varphi} + f_{2}\frac{\xi_{\varphi}}{2\xi} \right) + \\ &+ f_{2,\eta} \left[f_{2,\eta\xi}\xi_{\varphi} + f_{2,\eta\eta}\eta_{\varphi} + f_{2,\eta}\frac{u_{e,\varphi}}{u_{e}} \right] - f_{2,\eta\eta}f_{1,\eta}\frac{r_{s}}{r} = \\ &= \left[\left(f_{1,\eta}f_{2,\eta_{s}} + f_{2,\eta}\eta_{\eta}\eta_{\varphi} + f_{2,\eta}\frac{u_{e,\varphi}}{u_{e}} \right] - f_{2,\eta}f_{1,\eta}\frac{r_{s}}{r} = \\ &= \left[\left(f_{1,\eta}g_{2,\eta_{s}} + f_{2,\eta}g_{1,\eta} \right) \right] + \left[\left(f_{2,\eta}g_{2,\eta_{s}} - f_{2,\eta}g_{2,\eta} \right) \right] + \\ &+ f_{2,\eta} \left[f_{1,\eta}\frac{u_{e,s}}{u_{e}} + f_{2,\eta}\frac{u_{e,\varphi}}{u_{e}} \right] - f_{2,\eta\eta} \left(f_{1,\frac{\xi_{s}}{2\xi}} + f_{2}\frac{\xi_{\varphi}}{2\xi} \right) = \\ &= -\frac{1}{\Omega_{0}} \left[f_{2,\eta\eta}\left(g_{1} + g_{2} \right) - f_{2,\eta}g_{3} - f_{2,\eta}g_{4} - f_{2,\eta\varphi}g_{5} \right]; \\ \frac{S_{4}}{u_{e}} = f_{1,\eta} \left(h_{0,\xi}\xi_{s} + h_{0,\eta}\eta_{s} \right) - h_{0,\eta} \left(f_{1,\xi}\xi_{s} + f_{1,\eta}\eta_{s} + f_{1}\frac{\xi_{s}}{2\xi} \right) - \\ &- h_{0,\eta} \left(f_{2,\xi}\xi_{\varphi} + f_{2,\eta}\eta_{\varphi} + f_{2}\frac{\xi_{\varphi}}{2\xi} \right) + f_{2,\eta} \left(h_{0,\xi}\xi_{\varphi} + h_{0,\eta}\eta_{\varphi} \right) = \\ &= \left[\left(f_{1,\eta}h_{0,s} - f_{1,s}h_{0,\eta} \right) \right] + \left[\left(f_{2,\eta}h_{0,\varphi} - f_{2,\varphi}h_{0,\eta} \right) \right] - \\ &- h_{0,\eta} \left(f_{1,\frac{\xi_{s}}{2\xi} + f_{2}\frac{\xi_{\varphi}}{2\xi} \right) \right] = - \frac{1}{\Omega_{0}} \left[h_{0,\eta} \left(g_{1} + g_$$

Здесь

$$g_{1} = f_{1} + f_{2} \Omega_{2,\phi}; \ g_{2} = \Omega_{0} \left(f_{1,s} + f_{2,\phi} \right); \ g_{3} = f_{1,\eta} \Omega_{1,s} + f_{2,\eta} \Omega_{1,\phi};$$
$$g_{4} = f_{1,\eta} \Omega_{0}; \ g_{5} = f_{2,\eta} \Omega_{0}; \ g_{6} = \left(rf_{2,\eta} \right)^{2} \Omega_{2,s};$$
$$\Omega_{1,s} = \Omega_{0} \frac{u_{e,s}}{u_{e}}; \ \Omega_{1,\phi} = \Omega_{0} \frac{u_{e,\phi}}{u_{e}}; \ \Omega_{2,s} = \Omega_{0} \frac{r_{s}}{r}; \ \Omega_{2,\phi} = \frac{\xi_{\phi}}{\xi_{s}}; \ \Omega_{0} = \frac{2\xi}{\xi_{s}}.$$

В свою очередь,

$$-\frac{2\xi}{\xi_{s}}\frac{1}{u_{e}^{2}}\frac{1}{\rho}p_{s} = \frac{2\xi}{\xi_{s}}\frac{1}{u_{e}^{2}}\frac{\rho_{e}}{\rho}\left(u_{e}u_{e,s} + \frac{w_{e}}{r}u_{e,\phi} + w_{e}^{2}\frac{r_{s}}{r}\right) = \frac{\rho_{e}}{\rho}\Omega_{s};$$

$$-\frac{2\xi}{\xi_{s}}\frac{1}{ru_{e}^{2}}\frac{1}{\rho r}p_{\phi} = \frac{2\xi}{\xi_{s}}\frac{1}{r^{2}u_{e}^{2}}\frac{\rho_{e}}{\rho}\left(w_{e}w_{e,s} + \frac{w_{e}}{r}w_{e,\phi} - u_{e}w_{e}\frac{r_{s}}{r}\right) = \frac{\rho_{e}}{\rho}\Omega_{\phi};$$

$$\Omega_{s} = \Omega_{1,s} + \Omega_{1,\phi}\frac{w_{e}}{ru_{e}} + \Omega_{2,s}\left(\frac{w_{e}}{u_{e}}\right)^{2};$$

$$\Omega_{\phi} = \frac{1}{r^{2}}\left[\Omega_{0}\left(\frac{w_{e,s}}{u_{e}} + \frac{w_{e}}{u_{e}}\frac{w_{e,\phi}}{ru_{e}}\right) - \Omega_{2,s}\frac{w_{e}}{u_{e}}\right].$$

Далее введем обозначения

$$c_2 = c_1 / \Pr, \ c_3 = \left[(c_1 - c_2) (f_{1,\eta} f_{1,\eta\eta} + r^2 f_{2,\eta} f_{2,\eta\eta}) \right]_{\eta} u_e^2.$$

Тогда окончательная форма записи уравнений (2)–(4) принимает следующий вид:

$$\left(c_{1}f_{1,\eta\eta}\right)_{\eta} + \Omega_{s}\frac{\rho_{e}}{\rho} + f_{1,\eta\eta}\left(g_{1} + g_{2}\right) - f_{1,\eta}g_{3} - f_{1,\eta s}g_{4} - f_{1,\eta\phi}g_{5} - g_{6} = 0;$$

$$(8)$$

$$\left(c_{1}f_{2,\eta\eta}\right)_{\eta} + \Omega_{\varphi}\frac{\rho_{e}}{\rho} + f_{2,\eta\eta}\left(g_{1} + g_{2}\right) - f_{2,\eta}g_{3} - f_{2,\eta s}g_{4} - f_{2,\eta\varphi}g_{5} = 0;$$

$$(9)$$

$$\left(c_{2}h_{0,\eta}\right)_{\eta}+c_{3}+h_{0,\eta}\left(g_{1}+g_{2}\right)-h_{0,s}g_{4}-h_{0,\varphi}g_{5}=0.$$
 (10)

Удельный конвективный тепловой поток q_w , подводимый к стенке, и коэффициент теплообмена A_h рассчитываются по формулам:

$$q_{w} = \lambda_{w}T_{y,w} = \frac{\lambda_{w}\mu_{w}\rho_{w}}{c_{p}\mu_{w}\rho_{w}}\frac{\rho_{e}\mu_{e}}{\rho_{e}\mu_{e}}h_{0,\eta,w}\eta_{y,w} =$$
$$= \frac{c_{1,w}}{\Pr_{w}}h_{0,\eta,w}\frac{\rho_{e}\mu_{e}}{\rho_{w}}\frac{\rho_{w}u_{e}r}{\sqrt{2\xi}} = \frac{c_{1,w}}{\Pr_{w}\Psi}h_{0,\eta,w};$$

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2022. № 3

$$\Psi = r\sqrt{2\xi} / (\rho_e \mu_e u_e r^2); A_h = \frac{q_w}{h_{00} - h_w} = \frac{c_{1,w}}{\Pr_w \Psi (h_{00} - h_w)} h_{0,\eta,w}.$$

Удельное напряжение трения τ_w на стенке, его проекции $\tau_{s,w}$, $\tau_{\phi,w}$ и коэффициенты трения A_f , $A_{f,s}$, $A_{f,\phi}$ рассчитываются по формулам:

$$\begin{aligned} \tau_{w} &= \sqrt{\tau_{s,w}^{2} + \tau_{\phi,w}^{2}} = \frac{c_{1,w}}{\Psi} u_{e} \sqrt{f_{1,\eta\eta}^{2} + f_{2,\eta\eta}^{2}}; \\ \tau_{s,w} &= \mu_{w} u_{y,w} = \frac{\mu_{w} \rho_{w}}{\rho_{w}} \frac{\rho_{e} \mu_{e}}{\rho_{e} \mu_{e}} u_{\eta,w} \eta_{y,w} = \\ &= c_{1,w} u_{\eta,w} \frac{\rho_{e} \mu_{e}}{\rho_{w}} \frac{\rho_{w} u_{e} r}{\sqrt{2\xi}} = \frac{c_{1,w}}{\Psi} u_{\eta,w} = \frac{c_{1,w}}{\Psi} u_{e} f_{1,\eta\eta}; \\ \tau_{\phi,w} &= \mu_{w} w_{y,w} \frac{1}{r} = \frac{\mu_{w} \rho_{w}}{r \rho_{w}} \frac{\rho_{e} \mu_{e}}{\rho_{e} \mu_{e}} w_{\eta,w} \eta_{y,w} = c_{1,w} w_{\eta,w} \frac{\rho_{e} \mu_{e}}{r \rho_{w}} \frac{\rho_{w} u_{e} r}{\sqrt{2\xi}} = \\ &= \frac{c_{1,w}}{\Psi r} w_{\eta,w} = \frac{c_{1,w}}{\Psi r} r u_{e} f_{2,\eta\eta,w} = \frac{c_{1,w}}{\Psi} u_{e} f_{2,\eta\eta,w}; \\ A_{f} &= \tau_{w} / u_{e} = \sqrt{A_{f,s}^{2} + A_{f,\phi}^{2}}; \quad A_{f,s} = \tau_{s,w} / u_{e} = \frac{c_{1,w}}{\Psi} f_{1,\eta\eta}; \\ A_{f,\phi} &= \tau_{\phi,w} / u_{e} = \frac{c_{1,w}}{\Psi} f_{2,\eta\eta}. \end{aligned}$$

Методика численного решения задачи. Для определения значений искомых функций на шаге интегрирования h_s по координате *s*, удовлетворяющих системе уравнений (8)–(10), логичным представляется использование алгоритма решения аналогичной двумерной задачи [10] с заменой процедуры скалярной прогонки на процедуру матричной прогонки [11].

В результате исследований выявлено, что даже в условиях предельно высоких чисел Рейнольдса, характеризующих обтекание конуса газовым потоком, можно ограничиться применением метода скалярной прогонки последовательно для всех узловых значений координаты φ, используя итерационный подход к расчету частных производных по этой координате.

В рамках такого подхода удается обеспечить минимальную степень изменения существующего алгоритма решения аналогичной двумерной задачи, а его эффективность подтверждается высокой скоростью сходимости итерационных процедур.

12

Пример решения прикладной задачи. В качестве примера рассматривается обтекание совершенным газом с числом Маха М = 5 под углом атаки 5° кругового затупленного конуса с углом полураствора, равным 9°.

Расчет проводился:

для ламинарно-турбулентного режима течения газа в пограничном слое;

 – при единичном значении коэффициента перемежаемости на боковой поверхности конуса;

– с использованием алгебраической полуэмпирической модели расчета кажущейся турбулентной вязкости Себечи — Смита [12], модифицированной в работах [13, 14] на базе анализа экспериментальных данных по ламинарно-турбулентному теплообмену на затупленных конусах, проведенного в широком диапазоне чисел Рейнольдса из работ [6, 15–17], и турбулентного числа Прандтля 0,9;

– при значении числа Рейнольдса 10⁷, рассчитанного по параметрам газа в набегающем потоке, и радиусе сферического затупления конуса 63,5 м.

На рисунке приведены зависимости коэффициентов теплообмена и трения, вычисленных по предлагаемому алгоритму для образующих конуса, от координаты *s*. При этом координата *s* измеряется в долях радиуса сферического затупления конуса. Наветренной и подветренной образующим конуса соответствуют значения окружной координаты $\varphi = 0$ и 180°. Для образующих затупленного конуса также выполнены расчеты в двумерном приближении, которое, в соответствии с рекомендациями

Зависимости коэффициентов теплообмена (*a*) и трения (*б*) на боковой поверхности конуса от координаты *s* при $\varphi = 0$ (*1*), 60 (*2*), 120 (*3*), 180° (*4*); сплошные кривые — расчет по алгоритму; штриховые — двумерное приближение

из работы [6], можно рассматривать в качестве первого приближения к решению данной задачи.

Вывод. Сформулирован алгоритм эффективного численного метода решения уравнений трехмерного ламинарно-турбулентного погранично-го слоя на затупленных конусах.

ЛИТЕРАТУРА

[1] Vaglio-Laurin R. Laminar heat transfer on three-dimensional blunt nosed bodies in hypersonic flow. *ARS J.*, 1959, no. 2, pp. 123–129.

DOI: https://doi.org/10.2514/8.4698

[2] Авдуевский В.С. Расчет трехмерного ламинарного пограничного слоя на линиях растекания. *Изв. АН СССР. Механика и машиностроение*, 1962, № 1, с. 123–130.

[3] Башкин В.А. Расчетные соотношения и программы для численного интегрирования уравнений пространственного пограничного слоя на конических телах. *Труды ЦАГИ*, 1968, № 106, с. 97–118.

[4] Дородницын А.А. Об одном методе решения уравнений ламинарного пограничного слоя. *ПМТФ*, 1960, № 3, с. 111–118.

[5] Башкин В.А., Колина Н.П. Расчет сопротивления трения и теплового потока на сферически затупленных круговых конусах в сверхзвуковых потоках. *Труды* ЦАГИ, 1968, № 106, с. 119–181.

[6] Землянский Б.А., ред. Конвективный теплообмен летательных аппаратов. М., ФИЗМАТЛИТ, 2014.

[7] Авдуевский В.С., Кошкин В.К., ред. Основы теплопередачи в авиационной и ракетно-космической технике. М., Машиностроение, 1975.

[8] Шевелев Ю.Д. Трехмерные задачи теории ламинарного пограничного слоя. М., Наука, 1977.

[9] Алексин В.А. Моделирование турбулентных сжимаемых пристенных течений. В кн.: Гиперзвуковая аэродинамика и тепломассообмен спускаемых космических аппаратов и планетных зондов. М., ФИЗМАТЛИТ, 2011, с. 458–487.

[10] Горский В.В. Теоретические основы расчета абляционной тепловой защиты. М., Научный мир, 2015.

[11] Самарский А.А. Введение в теорию разностных схем. М., Наука, 1971.

[12] Cebeci T., Smith A.M.O. Analysis of turbulent boundary layers. New York, Academic Press, 1974.

[13] Горский В.В. Методика численного решения уравнений двумерного ламинарно-турбулентного пограничного слоя на проницаемой стенке затупленного тела вращения. *Космонавтика и ракетостроение*, 2017, № 3, с. 90–98.

[14] Горский В.В., Локтионова А.Г. Модифицированная алгебраическая модель турбулентной вязкости Себечи — Смита для всей поверхности затупленного конуса. *Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение*, 2020, № 4 (133), с. 28–41. DOI: http://dx.doi.org/10.18698/0236-3941-2020-4-28-41 Методика численного интегрирования трехмерных уравнений...

[15] Уидхопф Дж.Ф., Холл Р. Измерение теплопередачи на затупленном конусе под углом атаки при переходном и турбулентном режиме течения. *Ракетная техника и космонавтика*, 1972, т. 10, № 10, с. 71–79.

[16] Widhopf G.F., Hall R. Laminar, transitional and turbulent heat transfer measurement on a yawed blunt conical nosetip. *AIAA J.*, 1972, vol. 10, no. 10. DOI: https://doi.org/10.2514/3.50376

[17] Ширахи С.А., Трумен К.Р. Сравнение алгебраических моделей турбулентности на примере расчета с помощью параболизованных уравнений Навье — Стокса сверхзвукового обтекания конуса со сферическим носком. *Аэрокосмическая техника*, 1990, № 10, с. 69–81.

Горский Валерий Владимирович — д-р техн. наук, главный научный сотрудник АО «ВПК «НПО машиностроения» (Российская Федерация, 143966, Московская обл., г. Реутов, ул. Гагарина, д. 33); профессор кафедры «Вычислительная математика и математическая физика» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Просьба ссылаться на эту статью следующим образом:

Горский В.В. Методика численного интегрирования трехмерных уравнений ламинарно-турбулентного пограничного слоя на сферически затупленном круговом конусе малого удлинения. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение, 2022, № 3 (142), с. 4–17.

DOI: https://doi.org/10.18698/0236-3941-2022-3-4-17

NUMERICAL INTEGRATION METHOD FOR THREE-DIMENSIONAL EQUATIONS OF LAMINAR-TO-TURBULENT BOUNDARY LAYER ON A SPHERICALLY BLUNTED CIRCULAR CONE FEATURING A LOW ASPECT RATIO

V.V. Gorskiy

vpk@vpk.npomash.ru

JSC "MIC "NPO Mashinostroyenia", Reutov, Moscow Region, Russian Federation Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
At present, the Navier - Stokes equations are the	Numerical method, boundary
most popular tool used to study three-dimensional	layer, laminar-to-turbulent
heat transfer and friction. This approach significantly	flow, heat transfer
improves the investigation quality in the case of geo-	
metrically complex bodies, which confirms the validi-	
ty of using this involved computational procedure in	
practice. In the case of simple geometries widely used	
in engineering to design refractory structural ele-	

ments of high-energy devices, however, the Navier -	
Stokes equations are inferior to the equations of the	
laminar-to-turbulent boundary layer in a number	
of aspects. There are no published accounts regarding	
experimental data on heat transfer in the blunted	
regions of refractory structural elements shaped	
as blunted cones at extremely high Reynolds num-	
bers. Employing the boundary layer equations made	
solving this problem possible. Using the Navier -	
Stokes equations to solve problems in which the body	
surface changes over time results in considerable	
issues. At the same time, not enough attention is paid	
to methodology for rigorously solving the three-	
dimensional equations of the laminar-to-turbulent	
boundary layer; in this regard, developing a modern	Received 16.02.2021
method for solving the problem under consideration	Accepted 05.04.2021
is of certain interest	© Author(s), 2022

REFERENCES

[1] Vaglio-Laurin R. Laminar heat transfer on three-dimensional blunt nosed bodies in hypersonic flow. *ARS J.*, 1959, no. 2, pp. 123–129.

DOI: https://doi.org/10.2514/8.4698

[2] Avduevskiy V.S. Calculation of 3-dimensional laminar boundary layer on spreading lines. *Izv. AN SSSR. Mekhanika i mashinostroenie*, 1962, no. 1, pp. 123–130 (in Russ.).

[3] Bashkin V.A. Design ratios and programs for numerical equations integration of spatial boundary layer on cone bodies. *Trudy TsAGI*, 1968, no. 106, pp. 97–118 (in Russ.).

[4] Dorodnitsyn A.A. On a method for solving equations of laminar boundary layer. *PMTF*, 1960, no. 3, pp. 111–118 (in Russ.).

[5] Bashkin V.A., Kolina N.P. Calculation of friction resistance and heat transfer on spherical blunt circular cones in supersonic flows. *Trudy TsAGI*, 1968, no. 106, pp. 119–181 (in Russ.).

[6] Zemlyanskiy B.A., ed. Konvektivnyy teploobmen letatel'nykh apparatov [Convective heat transfer of aircraft]. Moscow, FIZMATLIT Publ., 2014.

[7] Avduevskiy V.S., Koshkin V.K., eds. Osnovy teploperedachi v aviatsionnoy i raketnokosmicheskoy tekhnike [Basics of heat transfer and aviation rocket-space technics]. Moscow, Mashinostroenie Publ., 1975.

[8] Shevelev Yu.D. Trekhmernye zadachi teorii laminarnogo pogranichnogo sloya [Three-dimensional of laminar boundary layer theory]. Moscow, Nauka Publ., 1977.

[9] Aleksin V.A. Modelirovanie turbulentnykh szhimaemykh pristennykh techeniy [Modelling of turbulent compressible flows]. V kn.: Giperzvukovaya aerodinamika i teplomassoobmen spuskaemykh kosmicheskikh apparatov i planetnykh zondov [In: Hypersonic aerodynamics and heat transfer of descent space vehicles and planetary probes]. Moscow, FIZMATLIT Publ., 2011, pp. 458–487 (in Russ.). Методика численного интегрирования трехмерных уравнений...

[10] Gorskiy V.V. Teoreticheskie osnovy rascheta ablyatsionnoy teplovoy zashchity [Theoretical foundations of calculating ablative heat protection]. Moscow, Nauchnyy mir Publ., 2015.

[11] Samarskiy A.A. Vvedenie v teoriyu raznostnykh skhem [Introduction into theory of difference chemes]. Moscow, Nauka Publ., 1971.

[12] Cebeci T., Smith A.M.O. Analysis of turbulent boundary layers. New York, Academic Press, 1974.

[13] Gorskiy V.V. Method of numerical solution of two-dimensional laminar-turbulence boundary layer equations on permeable wall of blunt rotation body. *Kosmonavtika i rake-tostroenie* [Cosmonautics and Rocket Engineering], 2017, no. 3, pp. 90–98 (in Russ.).

[14] Gorskiy V.V., Loktionova A.G. Modified algebraical Cebeci — Smith turbulent viscosity model for the entire surface of a blunted cone. *Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering*, 2020, no. 4 (133), pp. 28–41 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3941-2020-4-28-41

[15] Uidkhopf Dzh.F., Kholl R. Measurement of heat transfer on the blunted cone at the attack angle in transient and bypass flow state. *Raketnaya tekhnika i kosmonavtika*, 1972, vol. 10, no. 10, pp. 71–79 (in Russ.).

[16] Widhopf G.F., Hall R. Laminar, transitional and turbulent heat transfer measurement on a yawed blunt conical nosetip. *AIAA J.*, 1972, vol. 10, no. 10.

DOI: https://doi.org/10.2514/3.50376

[17] Shirakhi S.A., Trumen K.R. Comparison of algebraic turbulence models at the example of calculation using parabolized Navier — Stokes equation of supersonic flow past a cone with spherical nosetip. *Aerokosmicheskaya tekhnika*, 1990, no. 10, pp. 69–81 (in Russ.).

Gorskiy V.V. — Dr. Sc. (Eng.), Senior Research Fellow, JSC "MIC "NPO Mashinostroyenia" (Gagarina ul. 33, Reutov, Moscow Region, 143966 Russian Federation); Professor, Department of Computational Mathematics and Mathematical Physics, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Please cite this article in English as:

Gorskiy V.V. Numerical integration method for three-dimensional equations of laminar-to-turbulent boundary layer on a spherically blunted circular cone featuring a low aspect ratio. *Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering*, 2022, no. 3 (142), pp. 4–17 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2022-3-4-17