УДК 534-16

СВОБОДНЫЕ КОЛЕБАНИЯ ОРТОТРОПНОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ

С.Д. Алгазин

algazinsd@mail.ru

ИПМех РАН, Москва, Российская Федерация

Аннотация	Ключевые слова
Рассмотрена задача о свободных колебаниях орто-	Цилиндрическая оболочка,
тропной цилиндрической оболочки конечной дли-	свободные колебания, задачи
ны. Эта задача интенсивно исследовалась в СССР	на собственные значения,
во второй половине XX в., но не потеряла своей	численный алгоритм
актуальности и в настоящее время, например в ра-	без насыщения
ботах доктора технических наук Гулгазарян Л.Г.	
и др. Основы теории ненасыщаемых численных	
методов кратко изложены в книге члена-корреспон-	
дента АН СССР Бабенко К.И. «Основы численного	
анализа». Исследования в вычислительной матема-	
тике в этом направлении недостаточно пропаганди-	
ровались и за рубежом были практически неизвест-	
ны. В настоящее время в странах Запада, например	
в США и Щвейцарии, началось фактическое пере-	
открытие этих же вычислительных методов под на-	
званием «спектральные методы», а также в виде со-	
временных (<i>h-p</i>)-специализаций метода конечных	
элементов, в которых при измельчении сетки одно-	
временно увеличивается степень полиномов, ис-	
пользуемых для аппроксимации функций внутри	
одного конечного элемента. Приведен современный	
алгоритм без насыщения, выполнены конкретные	Поступила 06.08.2022
расчеты, которые показывают его высокую эффек-	Принята 19.09.2022
тивность	© Автор(ы), 2023

Работа выполнена по теме государственного задания № 123021700050-1

Введение. Впервые свободные колебания цилиндрической оболочки рассмотрены академиком Ониашвили О.Д. [1]. Динамическая задача теории оболочек сводится к соответствующей статической, если в уравнениях статики в значения компонентов вектора внешней нагрузки входят значения компонентов сил инерции. В динамических задачах компоненты внешней нагрузки равны соответствующим компонентам сил инерции:

$$X = -\rho \delta \frac{\partial^2 u}{\partial t^2}; \quad Y = -\rho \delta \frac{\partial^2 v}{\partial t^2}; \quad Z = -\rho \delta \frac{\partial^2 w}{\partial t^2}.$$
 (1)

Поскольку динамическая жесткость оболочки в направлении срединной поверхности намного больше жесткости в направлении нормали к последней, то тангенциальными составляющими сил инерции обычно пренебрегают:

$$X = 0; \quad Y = 0; \quad Z = -\rho \delta \frac{\partial^2 w}{\partial t^2}.$$
 (2)

Здесь рассмотрены колебания изгибного типа, определяемые нормальными смещениями *w*(α, β) точек срединной поверхности.

В таких случаях задача сводится к решению однородных дифференциальных уравнений тонкостенных оболочек. При решении таких уравнений произвольные функции (произвольные постоянные, если уравнения в частных производных приведены к типу обыкновенных путем разделения переменных) следует подчинить граничным условиям. В результате получаем систему однородных уравнений.

Условием существования произвольных функций (произвольных постоянных) является обращение в нуль соответствующего детерминанта. Для получения частот свободных колебаний оболочки необходимо раскрыть этот детерминант. Если контур оболочки прямоугольный в плане и на каждом краю задано четыре произвольных граничных условия, то упомянутый детерминант окажется 16-го порядка, т. е. его практически невозможно раскрыть.

К таким сложностям приводит решение однородной граничной задачи теории оболочек для общего случая, когда на контуре оболочки заданы произвольные граничные условия. Большие сложности возникают даже в менее общем случае, когда произвольные граничные условия заданы на противоположных краях. Ортотропная оболочка рассмотрена в [2].

В настоящей работе приведены современный высокоэффективный алгоритм без насыщения и конкретные расчеты, подтверждающие высокую эффективность.

Из работ зарубежных авторов отметим [3–10]. Обзор приведен в [10], в [3, 4] изучено вибрационное и затухающее поведение ортотропных цилиндрических оболочек с ограниченным вязкоупругим ядром с использованием конечного элемента на основе теории дискретных слоев. Упрощенная теория оболочек на основе уравнений Доннелла — Муштари — Власова для изучения вибрационного анализа ортотропных цилиндрических оболочек со свободно опертыми концами с использованием замкнутой формы решения предложена в [5]. На основе точного решения в [6] рассмотрено неосесимметричное динамическое поведение заглубленых ортотропных цилиндрических оболочек, возбужденных комбинацией Р-, SV- и SH-волн. Для исследования модальных характеристик тонкостенных ортотропных круглых цилиндрических оболочек со свободно опертыми концами в [7] использована вариационная процедура Рэлея — Ритца. Для изучения вибрации и демпфирования ортотропных цилиндрических оболочек с ограниченным демпфирования ортотропных соблюдении классических граничных условий в [8] предложен метод конечных элементов. Аналитическая процедура и вибрационные решения замкнутой формы с аналитически определяемыми коэффициентами для ортотропных круглых цилиндрических оболочек, подверженных классическим граничным условиям, приведены в [9].

Как правило, в указанных работах решение представлено в виде синуса/косинуса по осевой и окружной координатам с числом волн *m* и *n*. В настоящей работе решение по окружной координате приведено в виде синуса/косинуса, а по осевой — интерполировано многочленом. Производные от решения получены дифференцированием этих интерполяционных формул. Таким образом, задача сведена к проблеме собственных значений для системы обыкновенных дифференциальных уравнений.

Цель настоящей работы — доказать методом вычислительного эксперимента, что для современных численных методов без насыщения эта задача не является сложной.

Сравнение с более ранними вычислениями затруднительно по указанной ранее причине. Далее приведено сравнение с результатами работы [10]. Совпадение, как и следовало ожидать, плохое. В работах российских авторов [11, 12] конкретных расчетов не приведено.

Материалы и методы решения задач, принятые допущения. Рассмотрим замкнутую цилиндрическую оболочку (рисунок) длиной *l*, толщиной *h* и радиусом *R*, приведенную следующими уравнениями:

$$-B_{11}\frac{\partial^{2}u_{1}}{\partial\alpha^{2}} - B_{66}\frac{\partial^{2}u_{1}}{\partial\beta^{2}} - (B_{12} + B_{66})\frac{\partial^{2}u_{2}}{\partial\alpha\partial\beta} + \frac{B_{12}}{R}\frac{\partial u_{3}}{\partial\alpha} = \omega^{2}\rho u_{1}; \quad (3)$$
$$-(B_{12} + B_{66})\frac{\partial^{2}u_{1}}{\partial\alpha\partial\beta} - B_{66}\frac{\partial^{2}u_{2}}{\partial\alpha^{2}} - B_{22}\frac{\partial^{2}u_{2}}{\partial\beta^{2}} + \frac{B_{22}}{R}\frac{\partial u_{3}}{\partial\beta} - \frac{\mu^{4}}{R^{2}}\left(4B_{66}\frac{\partial^{2}u_{2}}{\partial\alpha^{2}} + B_{22}\frac{\partial^{2}u_{2}}{\partial\beta^{2}}\right) - \frac{\mu^{4}}{R^{2}}\left(B_{22}\frac{\partial^{3}u_{3}}{\partial\beta^{3}} + (B_{12} + 4B_{66})\frac{\partial^{3}u_{3}}{\partial\beta\partial\alpha^{2}}\right) = \omega^{2}\rho u_{2}; \quad (4)$$

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2023. № 3

$$\mu^{4} \left(B_{11} \frac{\partial^{4} u_{3}}{\partial \alpha^{4}} + 2(B_{12} + 2B_{66}) \frac{\partial^{4} u_{3}}{\partial \alpha^{2} \partial \beta^{2}} + B_{22} \frac{\partial^{4} u_{3}}{\partial \beta^{4}} \right) + \frac{\mu^{4}}{R} \left(B_{22} \frac{\partial^{3} u_{2}}{\partial \beta^{3}} + (B_{12} + 4B_{66}) \frac{\partial^{3} u_{2}}{\partial \beta \partial \alpha^{2}} \right) - \frac{B_{11}}{R} \frac{\partial u_{1}}{\partial \alpha} - \frac{B_{22}}{R} \frac{\partial u_{2}}{\partial \beta} + \frac{B_{22}}{R^{2}} u_{3} = \omega^{2} \rho \, u_{3}.$$
(5)

Здесь B_{ij} — коэффициенты упругости; u_1 , u_2 и u_3 — проекции вектора смещений соответственно в направлениях α , β и нормали к поверхности оболочки; R — радиус направляющей окружности срединной поверхности; ω — угловая частота собственных колебаний; ρ — плотность материала; $\mu^4 = h^2 / 12$ [13];

$$B_{11} = \frac{E_1}{1 - v_1 v_2}; \quad B_{22} = \frac{E_2}{1 - v_1 v_2}; \quad B_{66} = G_{12} = G;$$

$$B_{12} = \frac{v_2 E_1}{1 - v_1 v_2} = \frac{v_1 E_2}{1 - v_1 v_2}; \quad B_{16} = B_{26} = 0;$$

$$v_{12} = v_2; \quad v_{21} = v_1; \quad v_2 E_1 = v_1 E_2.$$
(6)

Ортотропная цилиндрическая оболочка

Введем безразмерные переменные:

$$\lambda = \frac{\rho \omega^2}{B_{11}} R^2; \ \hat{\alpha} = \frac{\alpha}{R}; \ \hat{\beta} = \frac{\beta}{R}; \ \hat{h} = \frac{h}{R}; \ u = \frac{u_1}{R}; \ v = \frac{u_2}{R}; \ w = \frac{u_3}{R}.$$

Далее знак ^ над безразмерными величинами опускаем, в (3)–(6) полагаем:

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2023. № 3

С.Д. Алгазин

$$u = U(\alpha) \cos n\beta; \quad v = V(\alpha) \sin n\beta; \quad w = W(\alpha) \cos n\beta.$$
 (7)

В результате при n = 0 получаем

$$-U''(\alpha) + v_2 W'(\alpha) = \lambda U(\alpha);$$

(h²/12) W^(IV)(\alpha) - U'(\alpha) + r₂₁W(\alpha) = \lambda W(\alpha); r₂₁ = E₂ / E₁. (8)

К уравнениям (8) необходимо добавить граничные условия. Обозначим b = l/R, тогда условия защемления по торцам оболочки можно записать так:

$$U(0) = U(b) = 0; \quad V(0) = V(b) = 0;$$

$$W(0) = W(b) = 0, \quad W'(0) = W'(b) = 0.$$
(9)

Матрицы численного дифференцирования. В численных алгоритмах без насыщения решение интерполируется многочленом. Матрицы численного дифференцирования получаем, дифференцируя интерполяционные формулы.

Для дискретизации уравнений (8) применяем интерполяцию многочленами. Полагаем, что

$$u(x) = \sum_{j=1}^{M} l_j(x)u_j, \quad u_j = u(x_j), \quad j = 1, 2, ..., M,$$
(10)

где $l_j(x)$, $l_j(x_i) = \delta_{ij}$ — фундаментальные функции интерполяции, удовлетворяющие рассматриваемым краевым условиям; x_j — узлы интерполяции по x; M — число узлов. Отметим, что с целью минимизировать константы Лебега интерполяции применяется неравномерная сетка по x[14]. Дискретизация многочленами по пространственной переменной реагирует на гладкость отыскиваемого решения и ее точность тем выше, чем большим условиям гладкости удовлетворяет отыскиваемое решение (по x). Априори эту гладкость знать не нужно, поскольку метод сам настроится на нее [14, с. 235]. Такие численные методы Бабенко К.И. предложил называть численными алгоритмами без насыщения [15]. Последний обзор по численным алгоритмам без насыщения опубликован в [16].

Дифференцируя интерполяционную формулу (10) *р* раз по *x*, получаем

$$u^{(p)}(x) = \sum_{j=1}^{M} l_j^{(p)}(x)u_j, \ u_j = u(x_j), \ j = 1, 2, ..., M$$

тогда

$$u^{(p)}(x_i) \approx \sum_{j=1}^{M} D_{ij}^{(p)} u_j, \ D_{ij}^{(p)} = l_j^{(p)}(x_i), \ i = 1, 2, ..., M.$$

Погрешность численного дифференцирования аналитически исследована в [16, 17], эта задача некорректная. Автором выполнено экспериментальное исследование формулы численного дифференцирования на бесконечно дифференцируемых функциях. Получено, что для p = 1, 2,3, 4 и $M \le 50$ точность численного дифференцирования приемлемая. Отметим, что для рассматриваемой задачи число узлов достаточно выбирать не более 40.

Дискретизация уравнений (8) выполняется заменой производных от *и* и *w* матрицами численного дифференцирования [18].

Результаты численных расчетов. Методические расчеты проводились для задачи на собственные значения (8), (9) при b = 2, $\rho = 2,4 \cdot 10^3$ кг/м³, $E_1 = 6,37 \cdot 10^{10}$ H/м², $E_2 = 1,47 \cdot 10^{10}$ H/м², $G = 4,9 \cdot 10^9$, $v_1 = 0,26$, $v_2 = 0,06$. На сетке по α из пяти узлов (M = 5) получены следующие собственные значения ($\sqrt{\lambda_i}$, i = 1, 2, 3): 0,4975, 0,66 и 0,96. На сетке из 10 узлов получены близкие собственные значения: 0,4974054164, 0,63141693 и 0,9829 (удержаны знаки, совпавшие с расчетами на 20 узлах). Таким образом, первое собственное значение (основной тон) определено на пяти узлах с четырьмя знаками после запятой. Подробно расчеты приведены далее.

Узел Методы расчета собственных значений дискретной задачи 2 3 1 4 5 122,78 76,546 53,003 41,672 39,719 Метод конечных элементов [10] 76,464 52,869 41,486 39,423 Методы, приведенные в [10] 122,75 0,445 Ошибка, % 0,024 0,107 0,251 0,743 117,98 70,257 52,201 44,175 Предлагаемый алгоритм без насыщения 36,813

Результаты сравнения полученных значений с данными из [10]

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2023. № 3

С.Д. Алгазин

Заключение. Рассмотрены свободные колебания ортотропной цилиндрической оболочки конечной длины. Приведен современный алгоритм без насыщения [18]. Отмечено, что исследования в вычислительной математике в этом направлении за рубежом практически неизвестны. Только в настоящее время начались независимые исследования этих вычислительных методов за рубежом под названием «спектральные методы» [19], а также в виде современных (h-p)-специализаций метода конечных элементов [20–22], в которых при измельчении сетки (при $h \to 0$) одновременно увеличивается степень полиномов, используемых при аппроксимации функций внутри одного конечного элемента. Остается лишь сожалеть, что к этому моменту работы Бабенко К.И. и его учеников оказались практически забыты. Из вычислительных экспериментов получено, что на сетках из M = 5, 10, 20 узлов (собственные значения дискретной задачи действительны и положительны) наблюдается сходимость алгоритма. Далее выполнены конкретные расчеты первого собственного значения (основного тона) на пяти узлах с четырьмя знаками после запятой. Проведено сравнение результатов численного анализа с данными работы [10].

ЛИТЕРАТУРА

[1] Ониашвилн О.Д. Некоторые динамические задачи теории оболочек. М., Изд-во АН СССР, 1957.

[2] Гулгазарян Г.Р., Гулгазарян Л.Г., Саакян Р.Д. Колебания тонкой упругой ортотропной круговой цилиндрической оболочки со свободным и шарнирно закрепленным краями. *Прикладная математика и механика*, 2008, т. 72, № 3, с. 453–465.

[3] Ramesh T., Ganesan N. Orthotropic cylindrical shells with a viscoelastic core: a vibration and damping analysis. *J. Sound Vib.*, 1994, vol. 175, no. 4, pp. 535–555. DOI: https://doi.org/10.1006/jsvi.1994.1344

[4] Ramasamy R., Ganesan N. Vibration and damping analysis of fluid filled orthotropic cylindrical shells with constrained viscoelastic damping. *Comput. Struct.*, 1999, vol. 70, no. 3, pp. 363–376. DOI: https://doi.org/10.1016/S0045-7949(98)00192-8

[5] Soedel W. Simplified equations and solutions for the vibration of orthotropic cylindrical shells. *J. Sound Vib.*, 1983, vol. 87, no. 4, pp. 555–566.

DOI: https://doi.org/10.1016/0022-460X(83)90506-0

[6] Upadhyay P., Mishra B. Non-axisymmetric dynamic response of buried orthotropic cylindrical shells. *J. Sound Vib.*, 1988, vol. 121, no. 1, pp. 149–160. DOI: https://doi.org/10.1016/S0022-460X(88)80067-1

[7] Ip K.H., Chan W.K., Tse P.C., et al. Vibration analysis of orthotropic thin cylindrical shells with free ends by the Rayleigh — Ritz method. *J. Sound Vib.*, 1996, vol. 195, no. 1, pp. 117–135. DOI: https://doi.org/10.1006/jsvi.1996.0407

[8] Wang H.-J., Chen L.-W. Finite element dynamic analysis of orthotropic cylindrical shells with a constrained damping layer. *Finite Elem. Anal. Des.*, 2004, vol. 40, no. 7, pp. 737–755. DOI: https://doi.org/10.1016/S0168-874X(03)00112-4

[9] Liu B., Xing Y., Qatu M., et al. Exact characteristic equations for free vibrations of thin orthotropic circular cylindrical shells. *Compos. Struct.*, 2012, vol. 94, no. 2, pp. 484–493. DOI: https://doi.org/10.1016/j.compstruct.2011.08.012

[10] Zhao J., Choe K., Zhang Y., et al. A closed form solution for free vibration of orthotropic circular cylindrical shells with general boundary conditions. *Compos. B. Eng.*, 2019, vol. 159, pp. 447–460. DOI: https://doi.org/10.1016/j.compositesb.2018.09.106

[11] Виноградов Ю.И. Анализ концентрации напряжений с контролируемой погрешностью в тонкостенных конструкциях (транспортно-пусковой стакан). Известия РАН. Механика твердого тела, 2021, № 2, с. 110–123.

DOI: https://doi.org/10.31857/S0572329921020173

[12] Бакулин В.Н. Аппроксимации для моделирования напряженно-деформированного состояния слоистых цилиндрических оболочек. *Математическое моделирование*, 2004, т. 16, № 6, с. 101–105.

[13] Амбарцумян С.А. Общая теория анизотропных оболочек. М., Наука, 1974.

[14] Гончаров В.Л. Теория интерполирования и приближения функций. М., Гостехиздат, 1954.

[15] Бабенко К.И. Основы численного анализа. М., Наука, 1986.

[16] Гавриков М.Б. Методы без насыщения в вычислительной математике. Препринт ИПМ им. М.В. Келдыша, 2019, № 75.

DOI: https://doi.org/10.20948/prepr-2019-75

[17] Гавриков М.Б., Таюрский А.А. Функциональный анализ и вычислительная математика. М., URSS, 2016.

[18] Алгазин С.Д. Численные алгоритмы без насыщения в классических задачах математической физики. М., URSS, 2019.

[19] Orszag S.A., Gotlib D. Numerical analysis of spectral methods. Philadelphia, SIAM, 1977.

[20] Toselli A., Widlund O. Domain decomposition methods — algorithms and theory. Berlin, Springer Verlag, 2004.

[21] Schwab C. P- and hp-finite element methods. New York, Clarendon Press, 1998.

[22] Schwab C., Suri M., Xenophontos C. The hp-finite element method for problems in mechanics with boundary layers. *Comput. Methods Appl. Mech. Engrg.*, 1998, vol. 157, pp. 311–333. DOI: https://doi.org/10.1016/S0045-7825(97)00243-0

Алгазин Сергей Дмитриевич — д-р физ.-мат. наук, ведущий научный сотрудник лаборатории механики и оптимизации конструкций ИПМех РАН (Российская Федерация, 119526, Москва, пр-т Вернадского, д. 101, корп. 1).

Просьба ссылаться на эту статью следующим образом:

Алгазин С.Д. Свободные колебания ортотропной цилиндрической оболочки. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение, 2023, № 3 (146), с. 4–14. DOI: https://doi.org/10.18698/0236-3941-2023-3-4-14

FREE OSCILLATIONS OF THE ORTHOTROPIC CYLINDRICAL SHELL

S.D. Algazin

algazinsd@mail.ru

IPMech RAS, Moscow, Russian Federation

Abstract	Keywords
The paper considers the problem of free oscillations	Cylindrical shell, free oscilla-
of the orthotropic cylindrical shell of a finite length.	tions, eigenvalue problems,
This problem was intensively studied in USSR in the	numerical algorithm without
second half of the 20th century, but it did not lose its	saturation
relevance now, for example, works of Dr. Sc. (Eng.)	
L.G. Gulgazaryan and others should be mentioned.	
The Corresponding Member of the Academy of Sci-	
ences of the USSR Babenko K.I. presented briefly	
fundamentals of the theory of non-saturable numeri-	
cal methods in his books. Research in computational	
mathematics in this area was not sufficiently promot-	
ed, and the results remain still practically unknown	
abroad. At present, actual rediscovery of the those	
computational methods was started in the West un-	
der the "spectral methods" name, as well as in the	
form of the modern $(h-p)$ -specializations of the finite	
element method, where the grid was being refined	
(i.e., for $h \rightarrow 0$) simultaneously increasing the degree	
of polynomials used in approximation of functions	
within one finite element. Modern algorithm without	Received 06.08.2022
saturation is presented, and specific calculations are	Accepted 19.09.2022
considered showing its high efficiency	© Author(s), 2023

The work was performed on the topic of the State Assignment no. 123021700050-1

REFERENCES

[1] Oniashviln O.D. Nekotorye dinamicheskie zadachi teorii obolochek [Some dynamic problems in shell theory]. Moscow, Izd-vo AN SSSR, 1957.

[2] Gulgazaryan G.R., Gulgazaryan L.G., Saakyan R.D. The vibrations of a thin elastic orthotropic circular cylindrical shell with free and hinged edges. *J. Appl. Math. Mech.*, 2008, vol. 72, no. 3, pp. 312–322. DOI: https://doi.org/10.1016/j.jappmathmech.2008.07.009

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2023. № 3

12

[3] Ramesh T., Ganesan N. Orthotropic cylindrical shells with a viscoelastic core: a vibration and damping analysis. *J. Sound Vib.*, 1994, vol. 175, no. 4, pp. 535–555. DOI: https://doi.org/10.1006/jsvi.1994.1344

[4] Ramasamy R., Ganesan N. Vibration and damping analysis of fluid filled orthotropic cylindrical shells with constrained viscoelastic damping. *Comput. Struct.*, 1999, vol. 70, no. 3, pp. 363–376. DOI: https://doi.org/10.1016/S0045-7949(98)00192-8

[5] Soedel W. Simplified equations and solutions for the vibration of orthotropic cylindrical shells. *J. Sound Vib.*, 1983, vol. 87, no. 4, pp. 555–566. DOI: https://doi.org/10.1016/0022-460X(83)90506-0

[6] Upadhyay P., Mishra B. Non-axisymmetric dynamic response of buried orthotropic cylindrical shells. *J. Sound Vib.*, 1988, vol. 121, no. 1, pp. 149–160. DOI: https://doi.org/10.1016/S0022-460X(88)80067-1

[7] Ip K.H., Chan W.K., Tse P.C., et al. Vibration analysis of orthotropic thin cylindrical shells with free ends by the Rayleigh —Ritz method. *J. Sound Vib.*, 1996, vol. 195, no. 1, pp. 117–135. DOI: https://doi.org/10.1006/jsvi.1996.0407

[8] Wang H.-J., Chen L.-W. Finite element dynamic analysis of orthotropic cylindrical shells with a constrained damping layer. *Finite Elem. Anal. Des.*, 2004, vol. 40, no. 7, pp. 737–755. DOI: https://doi.org/10.1016/S0168-874X(03)00112-4

[9] Liu B., Xing Y., Qatu M., et al. Exact characteristic equations for free vibrations of thin orthotropic circular cylindrical shells. *Compos. Struct.*, 2012, vol. 94, no. 2, pp. 484–493. DOI: https://doi.org/10.1016/j.compstruct.2011.08.012

[10] Zhao J., Choe K., Zhang Y., et al. A closed form solution for free vibration of orthotropic circular cylindrical shells with general boundary conditions. *Compos. B. Eng.*, 2019, vol. 159, pp. 447–460. DOI: https://doi.org/10.1016/j.compositesb.2018.09.106

[11] Vinogradov Yu.I. Analysis of stress concentration with a controlled error in thinwalled structures (transport and launch container). *Mech. Solids*, 2021, vol. 56, no. 2, pp. 230–241. DOI: https://doi.org/10.3103/S002565442102014X

[12] Bakulin V.N. Approximations for modelling of layer cylindrical shells. *Matematicheskoe modelirovanie*, 2004, vol. 16, no. 6, pp. 101–105 (in Russ.).

[13] Ambartsumyan S.A. Obshchaya teoriya anizotropnykh obolochek [General theory of anisotropic shells]. Moscow, Nauka Publ., 1974.

[14] Goncharov V.L. Teoriya interpolirovaniya i priblizheniya funktsiy [Theory of interpolation and approximation of functions.]. Moscow, Gostekhizdat Publ., 1954.

[15] Babenko K.I. Osnovy chislennogo analiza [Fundamentals of numerical analysis]. Moscow, Nauka Publ., 1986.

[16] Gavrikov M.B. Methods without saturation in computational mathematics. *Preprint IPM im. M.V. Keldysha* [Keldysh Institute Preprints], 2019, no. 75 (in Russ.). DOI: https://doi.org/10.20948/prepr-2019-75

[17] Gavrikov M.B., Tayurskiy A.A. Funktsionalnyy analiz i vychislitelnaya matematika [Functional analysis and computational mathematics]. Moscow, URSS Publ., 2016.

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2023. № 3

[20] Toselli A., Widlund O. Domain decomposition methods — algorithms and theory. Berlin, Springer Verlag, 2004.

[21] Schwab C. P- and hp-finite element methods. New York, Clarendon Press, 1998.

[22] Schwab C., Suri M., Xenophontos C. The hp-finite element method for problems in mechanics with boundary layers. *Comput. Methods Appl. Mech. Engrg.*, 1998, vol. 157, pp. 311–333. DOI: https://doi.org/10.1016/S0045-7825(97)00243-0

Algazin S.D. — Dr. Sc. (Phys.-Math.), Lead Research Fellow, Laboratory of Mechanics and Optimization of Designs, IPMech RAS (Vernadskogo prospekt 101, korp. 1, Moscow, 119526 Russian Federation).

Please cite this article in English as:

Algazin S.D. Free oscillations of the orthotropic cylindrical shell. *Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering*, 2023, no. 3 (146), pp. 4–14 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2023-3-4-14

^[18] Algazin S.D. Chislennye algoritmy bez nasyshcheniya v klassicheskikh zadachakh matematicheskoy fiziki [Numerical algorithms without saturation in classical problems of mathematical physics]. Moscow, URSS Publ., 2019.

^[19] Orszag S.A., Gotlib D. Numerical analysis of spectral methods. Philadelphia, SIAM, 1977.