ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ТЕПЛООБМЕНА В МЕЖСТЕННОМ ПРОСТРАНСТВЕ КРИОГЕННОГО РЕЗЕРВУАРА С ПОРОШКОВОЙ ИЗОЛЯЦИЕЙ

Т.И. Клеблеев¹ В.Ю. Семенов²

klebleev@cryoservice.ru vysemenov@bmstu.ru

¹ АО «НПП Криосервис», Москва, Российская Федерация ² МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация

Двустенные криогенные неизотермические резервуары с вакуумно-порошковой или вакуумно-многослойной изоляцией применяются для хранения и транспортирования криогенных жидкостей. При нарушении герметичности внутреннего сосуда криогенная жидкость проливается в теплоизоляционное пространство и испаряется в результате теплопритока из окружающей среды, при этом увеличивается давление в теплоизоляционном пространстве. Для обеспечения работоспособности резервуара необходимо ограничить увеличение давления в теплоизоляционном пространстве. Приведены результаты экспериментов по испарению криогенной жидкости, поступающей в пространство, заполненное порошковой изоляцией (при экспериментах использован вспученный перлит). Эксперименты выполнены на модели, имитирующей теплоизоляционное пространство резервуара. В результате экспериментов определен характер распределения криогенной жидкости в объеме порошковой изоляции, показана возможность ее непосредственного контакта со стенками внутреннего сосуда, а также определены температура стенок и интенсивность испарения криогенной жидкости с течением времени. Результаты работы позволяют уточнить физико-математическую модель развития аварийного процесса в межстенном пространстве криогенного резервуара, связанную с нарушением герметичности внутреннего сосуда и последующим проливом криогенной жидкости в теплоизоляционное пространство

Ключевые слова

Криогенный резервуар, аварийный режим, нарушение герметичности, скорость испарения криогенной жидкости

Поступила 14.06.2022 Принята 21.10.2022 © Автор(ы), 2023 **Введение.** В настоящее время для хранения и транспортирования таких криогенных жидкостей, как жидкие азот и кислород, сжиженный природный газ (СПГ), применяются двустенные криогенные неизотермические резервуары с вакуумно-порошковой или вакуумно-многослойной изоляцией [1, 2]. Двустенные криогенные резервуары (рис. 1) состоят из внутреннего сосуда и наружного кожуха. Стенка наружного кожуха имеет две поверхности — внешнюю, обращенную в окружающую среду (атмосферу), и внутреннюю, обращенную в теплоизоляционную полость. Межстенное пространство (между внутренним сосудом и внутренней поверхностью стенки наружного кожуха) заполняется порошком или многослойной изоляцией и вакуумируется. Из внутреннего сосуда через межстенное пространство в атмосферу выводятся технологические трубопроводы.

114

На наружном кожухе резервуара располагается разрывная мембрана, которая защищает кожух от разрушения при избыточном давлении и внутренний сосуд при потере устойчивости в случае его аварийной разгерметизации — одного из вероятных сценариев развития аварийных ситуаций для оборудования такого типа.

Для резервуаров, предназначенных для жидких продуктов разделения воздуха, пролив жидкого продукта в кожух и последующий его выброс через разрывную мембрану не представляет большой опасности и, как правило, расценивается как инцидент. Для резервуаров с СПГ его пролив и последующий выброс в атмосферу могут привести к аварии с серьезными последствиями (загазованность территории и возможность воспламенения паровоздушного облака). Экспериментальное исследование теплообмена в межстенном пространстве...

Применение двухоболочечных криогенных резервуаров позволяет исключить выброс криогенной жидкости в атмосферу при нарушении герметичности внутреннего сосуда резервуара. Согласно СП 326.1311500.2017¹, под двухоболочечным резервуаром для хранения СПГ понимается резервуар, оснащенный термоизоляционным кожухом, предназначенным для вакуумной изоляции, обеспечивающий при разгерметизации внутреннего (рабочего) сосуда удержание в межстенном пространстве жидкой фазы СПГ и контролируемый сброс паров СПГ в атмосферу из указанного пространства через систему газосброса объекта производства или потребления СПГ. Проектирование двухоболочечных резервуаров рассмотрено в [3–6]. Показано, что ключевым вопросом при проектировании является испарение СПГ в межстенном пространстве резервуаров с вакуумно-порошковой изоляцией. Несмотря на то что процессы сложного тепло- и массообмена неоднократно рассматривались [7–15], в настоящее время нет понимания того, как распределяется криогенная жидкость в порошковой изоляции и как определить площадь пятна контакта криогенной жидкости со стенкой наружного кожуха и скорость ее испарения.

Результаты экспериментов. В настоящей работе выполнен анализ процесса теплообмена в межстенном пространстве криогенного резервуара и приведены результаты экспериментального исследования.

В случае нарушения герметичности внутреннего сосуда или коммуникаций, расположенных в межстенном пространстве, криогенная жидкость вытекает в межстенное пространство и частично испаряется из-за теплопритока из окружающей среды. Скорость испарения криогенной жидкости в межстенном пространстве и, соответственно, увеличение давления определяются температурой стенки наружного кожуха, площадью пятна контакта вытекшей криогенной жидкости с внутренней поверхностью кожуха, термическим сопротивлением изоляции. Рассмотрим часть межстеннного пространства, заполненного порошковой изоляцией, в которую из отверстия в стенке внутреннего сосуда вытекает криогенная жидкость (рис. 2).

Под действием скоростного напора, гравитационной силы, поверхностного натяжения жидкости в пористой среде накопившаяся в теплоизоляционном пространстве криогенная жидкость распределяется в виде некоторого облака. Тепловой поток от стенки наружного кожуха к криогенной жидкости определяется размером поверхности облака, а также

¹ СП 326.1311500.2017. Объекты малотоннажного производства и потребления СПГ. Требования пожарной безопасности. М., Стандартинформ, 2018.

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2023. № 3

толщиной теплоизоляционного слоя между стенкой кожуха и поверхностью облака. Под поверхностью облака подразумевается поверхность, ограничивающая объем криогенной жидкости, находящейся в теплоизоляционном пространстве. Наибольший тепловой поток наблюдается, когда облако всей своей поверхностью контактирует с внутренней поверхностью стенки наружного кожуха и на ней происходит пленочное кипение криогенной жидкости. Если между криогенной жидкостью и стенкой кожуха находится слой изоляции, то тепловой поток к криогенной жидкости определяется термическим сопротивлением изоляции и его величина уменьшается на порядок.

В целях уточнения картины тепловых процессов в теплоизоляционном пространстве резервуара проведены эксперименты на упрощенной модели (рис. 3).

Конструкция модели включает в себя емкость с обечайкой 1 и плоскими днищами 2, 3 диаметром 0,273 м и высотой 1,5 м (объем 0,06 м³), заполненную вспученным перлитом 4, внутрь емкости введен подающий трубопровод 5 диаметром 32×2 мм. Материал емкости — сталь 12Х18Н10Т толщиной 4 мм. Верх подающего трубопровода выполнен в виде воронки 7, обеспечивающей свободный налив криогенной жидкости — жидкого азота. Трубопровод в нижней части заканчивается отводом, направленным под 90° в сторону образующей обечайки. В верхней части емкости предусмотрены отверстия, закрытые газопроницаемой тканью, что обеспечивает отвод испаряющихся паров, но исключает унос перлита (отвод паров через узел 6).

На обечайке установлены датчики, фиксирующие температуру в характерных точках:

 – Т1, находящейся на стыке обечайки и нижнего днища емкости на расстоянии 0,25 м от точки Т2; - T2, расположенной напротив конца подающего трубопровода;

– T3, находящейся на 0,15 м выше точки T2;

– T4, расположенной на стыке обечайки и нижнего днища емкости, диаметрально противоположно точке T1;

– Т5, расположенной диаметрально противоположно точке Т2.

В качестве средств измерения использованы датчики температуры со схемой Pt100, подключенные к многоканальному терморегулятору.

Полностью собранную модель устанавливали на весы с дискретностью шкалы 0,05 кг, показания которых фиксировали в течение всего эксперимента. Эксперименты выполняли на жидком азоте в три этапа. Первые два этапа проводили с вертикально установленной моделью. Масса налитого жидкого азота составляла 2,65 и 7,8 кг. На третьем этапе модель устанавливали горизонтально, в нее наливали 3,05 кг жидкого азота.

На первом этапе после налива жидкого азота в емкость, заполненную вспученным перлитом, измеряли температуру в характерных точках обечайки и скорость испарения жидкого азота в течение 24 мин. Скорость испарения отслеживали по показаниям весов. Графики изменения температуры в точке T2 и массы накопившегося в теплоизоляционном пространстве жидкого азота в течение первого этапа эксперимента приведены на рис. 4.

Рис. 4. Зависимости температуры в точке Т2 обечайки (1) и массы жидкого азота (2), накопившегося в теплоизоляционном пространстве, от времени (первый этап эксперимента, налив в модель 2,65 кг жидкого азота)

На первом этапе суммарные потери жидкого азота составили 0,5 кг (в среднем $3,5 \cdot 10^{-4}$ кг/с). Значительное изменение температуры наблюдалось только в точке T2 во время налива жидкого азота (температура снизилась с начального значения 20 °C до –12 °C, после чего температура плавно увеличивалась до –3 °C). Температура в точках T1 и T5 уменьшилась на 3...4 °C, в точке T3 — на 7 °C, в точке T4 — менее чем на 1 °C. В связи с незначительным изменением значений постоянная регистрация температуры в этих точках не проводилась.

На первом этапе, основываясь на результатах измерения массы жидкого азота и температуры обечайки, предположили, что накопившийся в теплоизоляционном пространстве жидкий азот сосредоточивается в центре зоны пролива и не опускается вниз. При этом между жидким азотом и обечайкой имеется некоторый теплоизоляционный слой перлита и отсутствует непосредственный контакт жидкого азота с обечайкой и нижним днищем. Поскольку размер зоны, занятой пролитым жидким азотом, зависит от его массы, то на втором этапе испытаний в емкость налили 7,8 кг жидкого азота, после чего наблюдали за изменением температуры обечайки в характерных точках и массы накопившегося в течение 29 мин в теплоизоляционном пространстве жидкого азота (рис. 5). Изменение температуры во всех характерных точках было более существенным, чем на первом этапе. Максимальное уменьшение температуры, как и на первом этапе, зафиксировано в точке Т2 — минимальная температура получена сразу после налива жидкого азота и составила -63 °С, после чего наблюдался постоянный рост до значения -18 °С.

Рис. 5. Зависимости температуры в характерных точках T1–T5 обечайки (*1–5*) и массы жидкого азота (*6*), накопившегося в теплоизоляционном пространстве, от времени (второй этап эксперимента, налив в модель 7,8 кг жидкого азота)

Аналогичная ситуация наблюдалась и в точках Т3 и Т5, но на более высоком температурном уровне — начальное уменьшение температуры до 2,4 °C и –7,5 °C и дальнейшее плавное увеличение до 3,9 °C и –1,8 °C.

В точках Т1 и Т4 наблюдалось плавное уменьшение температуры от 15 и 19 °C до -2,7 и -8,5 °C, при этом потери жидкого азота за 29 мин составили 1,7 кг или $9,7 \cdot 10^{-4}$ кг/с, т. е. в 2,8 раза больше, чем на первом этапе.

На третьем этапе экспериментов модель располагали горизонтально (рис. 6), выход из подающего трубопровода 4 направлен в сторону образующей обечайки 1 по горизонтальной оси сечения. В модель наливали 3,05 кг жидкого азота. Регистрацию значений температуры обечайки вели в трех характерных точках T1–T3, расположенных под точкой ввода жидкого азота, напротив точки пролива жидкого азота и с противоположной стороны обечайки от точки T1 соответственно.

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2023. № 3

119

Изменения температуры внутреннего сосуда и массы накопившегося в теплоизоляционном пространстве жидкого азота в модели в процессе эксперимента приведены на рис. 7. В отличие от второго этапа температура обечайки в точке T1 уменьшилась до -104 °C, а в точке T2 до -132 °C. После прекращения налива жидкого азота в теплоизоляционное пространство происходило постепенное отогревание обечайки в точках T1 и T2 до -46 °C, температура в точке T3 при этом за все время эксперимента уменьшилась менее чем на 14 °C.

Рис. 7. Зависимости температуры обечайки в точках T1–T3 (1–3) и массы жидкого азота (4), накопившегося в теплоизоляционном пространстве модели при наливе 3,05 кг жидкого азота

При наливе жидкого азота в теплоизоляционное пространство горизонтально расположенной модели возникали определенные сложности участок подающего трубопровода несколько раз забивался. При этом жидкий азот прекращал проливаться в теплоизоляционное пространство и происходил выброс жидкого азота и небольшого количества перлита наружу через подающий трубопровод. После удаления образовавшейся пробки вновь предпринимались попытки продолжить наливать жидкий азот. На рис. 7 видно, что с 300 по 1050 с происходит попеременное увеличение и снижение массы жидкого азота в модели, чем и объясняется знакопеременный характер изменения массы жидкого азота во времени как результат нескольких попыток налива жидкого азота с последующим его выбросом.

Характерная картина состояния модели в ходе эксперимента приведена на рис. 8, *a*, *б*. Минимальное уменьшение температуры наблюдалось на обечайке со стороны, противоположной точке пролива жидкого азота. Кроме того, на участке обечайки между точками T1 и T2 визуально

наблюдалась конденсация кислорода (рис. 8, *в*), что свидетельствует об уменьшении температуры в этом месте трубы до значений криогенных температур, т. е. имеет место непосредственный контакт жидкого азота с внутренней стороной обечайки.

а

Рис. 8. Состояние модели в ходе
эксперимента при ее горизонтальном расположении: *а*, *б* — вид со стороны точки пролива жидкого азота и с противоположной стороны; *в* — следы конденсирующегося кислорода на обечайке

в

Из результатов испытаний на третьем этапе следует, что при определенных условиях пролива жидкий азот может проникать на всю глубину теплоизоляции, достигая стенки резервуара. После прекращения его налива, как и в случае вертикального расположения модели, происходит перераспределение жидкого азота. При этом температура обечайки существенно увеличивается, а скорость испарения жидкого азота уменьшается.

Выводы. Проведенные эксперименты на вертикально установленной модели показали:

 пролитая в теплоизоляционное пространство криогенная жидкость не распределяется по всему объему и не опускается вниз, а сосредоточивается локально, возле места ввода;

 пролитая криогенная жидкость не достигает внутренней поверхности обечайки экспериментальной модели (температура цилиндрической стенки модели относительно высокая);

после прекращения налива криогенной жидкости наружные границы ее объема изменяются (увеличивается и уменьшается температура отдельных участков обечайки);

 распределение криогенной жидкости в теплоизоляционном пространстве во многом определяется скоростным напором при ее проливе из выходного отверстия (температура цилиндрической стенки емкости напротив выходного отверстия имеет минимальное значение); в дальнейшем распределение температур определятся массой налитой криогенной жидкости.

По результатам испытаний на горизонтально установленной модели сделан следующий вывод: при определенных условиях пролитая криогенная жидкость может проникать на всю глубину теплоизоляции, достигая стенки резервуара, но после прекращения ее налива, как и в случае вертикального расположения модели, происходит перераспределение криогенной жидкости. При этом температура стенки существенно увеличивается, а скорость испарения криогенной жидкости уменьшается.

Из результатов испытаний следует, что криогенная жидкость, пролитая в теплоизоляционное пространство, заполненное порошковой изоляцией, распределяется в изоляции в виде некоторого облака с размытыми границами, которые изменяются в процессе ее испарения. При этом поверхность пятна контакта криогенной жидкости и внутренней поверхности стенки наружного кожуха меньше, чем при ее проливе в емкость, свободную от изоляции.

ЛИТЕРАТУРА

[1] Архаров А.М., Смородин А.И., ред. Криогенные системы. Т. 2. М., Машиностроение, 1999.

[2] Филин Н.В., Буланов А.Б. Жидкостные криогенные системы. Л., Машиностроение, 1985.

[3] Горбачев С.П., Карпов В.Л. Резервуар для хранения криогенной жидкости. Патент РФ 2653611. Заявл. 22.08.2016, опубл. 11.05.2018.

[4] Горбачев С.П., Клеблеев Т.И. Аварийные режимы в криогенных неизотермических резервуарах для СПГ. *Вести газовой науки*, 2020, № 1, с. 130–135.

[5] Горбачев С.П., Клеблеев Т.И., Семенов В.Ю. Технологические схемы криогенных двухоболочечных резервуаров для СПГ. *Химическое и нефтегазовое машиностроение*, 2021, № 7, с. 16–19.

[6] Горбачев С.П., Карпов В.Л., Клеблеев Т.И. и др. Испытания макета двухоболочечного резервуара для хранения и транспортирования СПГ. *Газовая промышленность*, 2022, № 2, с. 88–93. Экспериментальное исследование теплообмена в межстенном пространстве...

[7] Бычков Е.Г., Жердев А.А., Макаров Б.А. и др. Разработка низкотемпературной камеры, обеспечивающей высокую скорость охлаждения объектов. Инженерный журнал: наука и инновации, 2013, № 1.

DOI: http://dx.doi.org/10.18698/2308-6033-2013-1-589

[8] Жердев А.А., Колесников А.С. Анализ энергетической эффективности применения хладоносителей с фазовым переходом в качестве вторичных хладоносителей. *Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение*, 2012, Спец. выпуск «Холодильная и криогенная техника, системы кондиционирования и жизнеобеспечения», с. 62–70.

[9] Стриженов Е.М., Фомкин А.А., Жердев А.А. и др. Адсорбция метана на микропористом углеродном адсорбенте АУ-1. *Физикохимия поверхности и защита материалов*, 2012, т. 48, № 6, с. 521–526.

[10] Стриженов Е.М., Школин А.В., Фомкин А.А. и др. Низкотемпературная адсорбция метана на микропористом углеродном адсорбенте АУ-1. *Физикохимия поверхности и защита материалов*, 2014, т. 50, № 1, с. 19–25.

[11] Маринюк Б.Т. Расчеты теплообмена в аппаратах и системах низкотемпературной техники. М., Машиностроение, 2015.

[12] Маринюк Б.Т., Королев И.А. Расчет и анализ динамики роста толщины водяного инея на охлаждаемой поверхности. *Холодильная техника*, 2016, № 11, с. 38–43.

[13] Явнель Б.К. О теплопередаче через слой инея. *Холодильная техника*, 1969, № 5, с. 34–37.

[14] Герасимов Н.А., Румянцев Ю.Д., Сундиев Н.П. Влияние толщины слоя инея на эффективность работы воздухоохладителей. *Холодильная техника*, 1981, № 4, с. 22–23.

[15] Кононов Н.С., Подмазко А.С. Инееобразование на поверхности воздухоохладителей модульного типа. *Холодильная техника и технологии*, 1992, № 54, с. 25–31.

Клеблеев Тимур Ильдарович — начальник конструкторского отдела АО «НПП Криосервис» (Российская Федерация, 105043, Москва, Заводской пр-д, д. 23).

Семенов Виктор Юрьевич — д-р техн. наук, профессор кафедры «Холодильная и криогенная техника, системы кондиционирования и жизнеобеспечения» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская, д. 5, стр. 1).

Просьба ссылаться на эту статью следующим образом:

Клеблеев Т.И., Семенов В.Ю. Экспериментальное исследование теплообмена в межстенном пространстве криогенного резервуара с порошковой изоляцией. *Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение*, 2023, № 3 (146), с. 113– 126. DOI: https://doi.org/10.18698/0236-3941-2023-3-113-126

EXPERIMENTAL STUDY OF HEAT TRANSFER IN THE INTERWALL SPACE OF A CRYOGENIC TANK WITH POWDER INSULATION

T.I. Klebleev¹ V.Yu. Semenov² klebleev@cryoservice.ru vysemenov@bmstu.ru

¹ JSC "NPP Cryoservice", Moscow, Russian Federation
 ² Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
Abstract Currently, double-wall cryogenic non-isothermal tanks with vacuum-powder or vacuum-multilayer insulation are used in storage and transportation of such cryogen- ic liquids as liquid nitrogen, oxygen and liquefied natu- ral gas. If the inner vessel is disrupted, the liquid spills into the heat-insulating space and evaporates as a result of heat inflow from the environment. This increases pressure in the thermal insulation space. To ensure functioning of the tank, it is necessary to limit pressure increase in the heat-insulating space. Results of experi- ments on evaporation of the liquid nitrogen entering the space filled with powder insulation were presented (expanded perlite was considered in the experiments). Experiments were carried out on a laboratory model simulating the tank heat-insulating space. Nature of the cryogenic liquid distribution in the powder insulation volume was determined, possibility of the cryogenic liquid direct contact with the walls of the tank was shown, and the tank walls temperatures and the cryo- genic products evaporation intensity over time were determined. Based on the work results, physical and	Keywords Cryogenic tank, emergency mode, leakage, cryogenic liquid evaporation rate
mathematical model of the emergency process devel-	
opment in the interwall space of a cryogenic tank asso-	
ciated with violation of the inner vessel tightness and	Received 14.06.2022
subsequent spill of cryogenic liquid into the heat-	Accepted 21.10.2022
insulating space was refined	© Author(s), 2023

REFERENCES

[1] Arkharov A.M., Smorodin A.I., eds. Kriogennye sistemy. T. 2 [Cryogenic systems. Vol. 2]. Moscow, Mashinostroenie Publ., 1999.

[2] Filin N.V., Bulanov A.B. Zhidkostnye kriogennye sistemy [Liquid cryogenic systems]. Leningrad, Mashinostroenie Publ., 1985.

Экспериментальное исследование теплообмена в межстенном пространстве...

[3] Gorbachev S.P., Karpov V.L. Rezervuar dlya khraneniya kriogennoy zhidkosti [Storage tank for cryogenic liquid]. Patent RU 2653611. Appl. 22.08.2016, publ. 11.05.2018 (in Russ.).

[4] Gorbachev S.P., Klebleev T.I. Emergency modes in cryogenic non-isothermal tanks for liquefied natural gas. *Vesti gazovoy nauki*, 2020, no. 1, pp. 130–135 (in Russ.).

[5] Gorbachev S.P., Klebleev T.I., Semenov V.Yu. Process flow diagrams of cryogenic double-wall tanks for LNG storage. *Chem. Petrol. Eng.*, 2021, vol. 57, no. 7-8, pp. 555–560. DOI: https://doi.org/10.1007/s10556-021-00975-0

[6] Gorbachev S.P., Karpov V.L., Klebleev T.I., et al. Tests of a full containment tank model for storage and transportation of liquefied natural gas. *Gazovaya promyshlennost* [Gas Industry], 2022, no. 2, pp. 88–93 (in Russ.).

[7] Bychkov E.G., Zherdev A.A., Makarov B.A., et al. Development of the low-temperature chamber to provide a high rate of object cooling. *Inzhenernyy zhurnal: nauka i innovatsii* [Engineering Journal: Science and Innovation], 2013, no. 1 (in Russ.). DOI: http://dx.doi.org/10.18698/2308-6033-2013-1-589

[8] Zherdev A.A., Kolesnikov A.S. Analysis of the energy efficiency of the use of coolants with a phase transition as secondary coolants. *Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering*, 2012, Spec. iss. "Refrigeration and cryogenic equipment, air conditioning and life support systems", pp. 62–70 (in Russ.).

[9] Strizhenov E.M., Fomkin A.A., Zherdev A.A., et al. Adsorption of methane on AU-1 microporous carbon adsorbent. *Prot. Met. Phys. Chem. Surf.*, 2012, vol. 48, no. 6, pp. 614–619. DOI: https://doi.org/10.1134/S2070205112060159

[10] Strizhenov E.M., Shkolin A.V., Fomkin A.A., et al. Low-temperature adsorption of methane on microporous AU-1 carbon adsorbent. *Prot. Met. Phys. Chem. Surf.*, 2014, vol. 50, no. 1, pp. 15–21. DOI: https://doi.org/10.1134/S2070205114010146

[11] Marinyuk B.T. Raschety teploobmena v apparatakh i sistemakh nizkotemperaturnoy tekhniki [Calculations of heat exchange in apparatuses and systems of low-temperature technology]. Moscow, Mashinostroenie Publ., 2015.

[12] Marinyuk B.T., Korolev I.A. Calculation and analysis of the growth dynamics of frost water thickness on a cooled surface. *Kholodilnaya tekhnika* [Refrigeration Technology], 2016, no. 11, pp. 38–43 (in Russ.).

[13] Yavnel B.K. On heat transfer through a layer of frost. *Kholodilnaya tekhnika* [Refrigeration Technology], 1969, no. 5, pp. 34–37 (in Russ.).

[14] Gerasimov N.A., Rumyantsev Yu.D., Sundiev N.P. Influence of frost layer thickness on the working efficiency of air coolers. *Kholodilnaya tekhnika* [Refrigeration Technology], 1981, no. 4, pp. 22–23 (in Russ.).

[15] Kononov N.S., Podmazko A.S. Frost formation on the surface of air coolers of modular type. *Kholodilnaya tekhnika i tekhnologii*, 1992, no. 54, pp. 25–31 (in Russ.).

Klebleev T.I. — Head of the Design Department, JSC "NPP Cryoservice" (Zavodskoy proezd 23, Moscow, 105043 Russian Federation).

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2023. № 3

Semenov V.Yu. — Dr. Sc. (Eng.), Professor, Department of Refrigeration, Cryogenic Engineering, Air Conditioning and Life Support Systems, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Please cite this article in English as:

Klebleev T.I., Semenov V.Yu. Experimental study of heat transfer in the interwall space of a cryogenic tank with powder insulation. *Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering*, 2023, no. 3 (146), pp. 113–126 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2023-3-113-126