МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РАБОЧЕГО ПРОЦЕССА ДВУХРОТОРНОГО ВАКУУМНОГО НАСОСА РУТСА

А.А. Исаев^{1, 2} А.А. Райков¹ А.В. Бурмистров¹ С.И. Саликеев¹ isaevaa050391@yandex.ru alraykov@kstu.ru burm@kstu.ru salikeev_s@mail.ru

¹ ФГБОУ ВО «КНИТУ», г. Казань, Российская Федерация ² АО «Вакууммаш», г. Казань, Российская Федерация

Аннотация

Ключевые слова

Выполнен обзор основных методов математического моделирования рабочих процессов бесконтактных вакуумных насосов, в частности машин Рутса. Показано, что подавляющее большинство моделей, включая CFD-модели, разработаны для условий сплошной среды и не применяются в условиях вакуума. С использованием системы дифференциальных уравнений, основанных на энергетическом балансе термодинамической системы переменной массы рабочего тела, разработана математическая модель машины внешнего сжатия. Уравнения получены из законов сохранения массы и энергии, а также уравнения состояния идеального газа и не содержат ограничений по режиму течения газа. Система уравнений решена численным методом LSODE (Livermore Solver for Ordinary Differential Equations) в пакете Mathematica, за начальные условия приняты давление и температура газа в откачиваемом объеме и параметры газа на выходе из насоса. В результате найдены зависимости давления и температуры в рассматриваемых объемах от угла поворота роторов. В модели учтен теплообмен газа со стенками рабочей камеры насоса. Обратные перетекания через щелевые каналы роторного механизма определены согласно универсальной методике расчета проводимостей, работающей для каналов различной геометрии в вязкостном, переходном и молекулярном режимах течения. Приведены результаты математического моделирования откачных характеристик двухроторного насоса и их сравнение с экспериментальными данными, валидация выполнена по быстроте действия и индикаВакуумный насос Рутса, рабочий процесс, математическое моделирование, откачные характеристики, индикаторные диаграммы

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2024. № 1

торным диаграммам машины. Разработанную ме-	
тодику математического моделирования можно	
рекомендовать для анализа влияния геометрии	
и рабочих условий на откачные характеристики	Поступила 21.07.2023
бесконтактных безмасляных вакуумных двухро-	Принята 12.09.2023
торных насосов Рутса	© Автор(ы), 2024

Введение. В связи с развитием микроэлектроники, нанотехнологий, металлургии и других отраслей промышленности, требующих для осуществления технологических процессов чистого, не загрязненного парами углеводородов вакуума, новый импульс получило направление, связанное с разработкой и созданием безмасляных вакуумных насосов. Например, несколько лет назад в качестве высоковакуумных и форвакуумных насосов использовались паромасляные и пластинчато-роторные насосы. В настоящее время в качестве форвакуумных и высоковакуумных устанавливают безмасляные насосы. Отечественной промышленностью успешно выпускаются форвакуумные насосы с масляным уплотнением и высоковакуумные паромасляные насосы [1]. Совсем иным образом обстоят дела с производством безмасляных машин. Выпуск спиральных вакуумных насосов в России начался только в 2016 г. [2], отечественные кулачково-зубчатые машины находятся на стадиях разработки и исследования опытных образцов [3], а «сухие» винтовые насосы — пока на стадии освоения производства [4]. Популярные двухроторные вакуумные насосы (ДВН) Рутса, хотя и выпускаются почти полвека, но в линейке присутствуют лишь два малых насоса с быстротой действия 200 и 600 м³/ч. Отечественные ДВН с большей производительностью находятся на этапе разработки, а для этого требуется надежная математическая модель машины Рутса, работающей в условиях вакуума.

В настоящее время существует несколько подходов к моделированию рабочего процесса объемных насосов. Метод, работающий во всех режимах течения газа, включая молекулярный, предложен в [5, 6]. Однако в нем используются усредненные по углу поворота роторов параметры и не учитывается теплообмен внутри насоса.

С развитием вычислительной газодинамики (Computational Fluid Dynamic, CFD) все больше исследователей концентрируются на численном анализе рабочих процессов вакуумных и компрессорных машин, поскольку получить детальную информацию о рабочих параметрах можно только CFD-методами [7, 8]. Например, в [9] приведен коммерческий решатель вычислительной гидродинамики PumpLinx CFD для 3D-модели-

рования, анализа и сравнения рабочего процесса вакуумного насоса Рутса, имеющего стандартный и двухлопастной винтовые профиль. В результате анализа установлено, что двухлопастной винтовой профиль более стабилен, чем стандартный. Однако данный анализ проведен для вязкостного режима течения с давлением 101,325 кПа на входе в насос и давлением 150 кПа на выходе, что не соответствует рабочим условиям вакуумных насосов. Коммерческий решатель Fluent CFD использован в [10] для анализа распределения давлений в цилиндре насоса Рутса и во впускных и выхлопных патрубках насоса в зависимости от изменения сечения трубопровода перед впускным и выхлопным патрубками. Наилучшая сходимость результатов эксперимента и расчета выявлена в случае с уменьшенным сечением трубопровода до впускного и выпускного патрубков. При CFD-анализе также не учитывались торцевые зазоры, но они компенсируются увеличением межроторного зазора.

Например, в [11] использован коммерческий решатель Ansys CFX 19.0 с предварительным моделированием динамической сетки газовой области в специальном программном продукте SCORG. Результаты расчета сравниваются с экспериментальными данными, полученными высокоскоростной камерой с мгновенным разрешением. При проведении эксперимента на входе и выходе из изделия температура газа не индицируется и не приводятся экспериментальные данные о температуре корпуса и роторов и данные о температуре роторов, корпуса и газа при расчете в Ansys CFX 19.0. При номинальных частотах вращения температура роторов, даже в вакуумном режиме, при давлении на ходе не более 30 мм рт. ст. может достигать 140 °C, что влияет на скорость газа, перетекания во всех группах зазоров и, как следствие, на сравнительную картину эксперимента и расчета.

Аналогично [11] в [12] проведен анализ компрессора в коммерческом решателе Ansys CFX 19.0 с предварительным моделированием динамической сетки газовой области. В отличие от [11], где рассмотрены скорости и траектория потока, переносимого роторами газа, в [12] проанализирован теплообмен. Экспериментальные данные получены методом ИК-термографии и выполнено сравнение с расчетными данными, полученными в Ansys CFX 19.0. Из приведенных сравнительных диаграмм можно сделать вывод о хорошей сходимости результатов эксперимента и расчета, что позволяет применять коммерческий решатель Ansys CFX 19.0 для прогнозирования сопряженного теплообмена между роторами, корпусом и нагнетаемым воздуходувкой газом в компрессорном режиме. Однако условия теплообмена для воздуходувок Рутса в вакуумном режиме в зависимости от степени разреженности будут разными. В связи с этим необходимо про-

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2024. № 1

должить исследование сопряженного теплообмена для воздуходувок Рутса в вакуумном режиме.

Однако, несмотря на наглядность и большое количество информации, которую можно получить CFD-методом, у данного направления есть недостатки:

– в бесконтактных насосах присутствуют очень протяженные каналы с зазорами на уровне десятков микрометров. Кроме того, рабочая полость изменяется по углу поворота роторов, что значительно усложняет задачу расчета в целом, поскольку необходима качественная расчетная сетка с определенным шагом для каждого угла поворота. Отсюда — длительное время расчета и очень высокие требования к вычислительным ресурсам;

– необходимо сочетать различные модели течения газа для моделирования турбулентности в рабочем объеме и течений в малых зазорах;

 все приведенные CFD-модели рассматривают вязкостную или околовязкостную область течения газа, что не покрывает весь рабочий диапазон насоса Рутса.

Постановка задачи. Для моделирования рабочего процесса в настоящей работе использованы дифференциальные уравнения, основанные на энергетическом балансе термодинамической системы переменной массы, предложенные М.А. Мамонтовым [13] и записанные в виде:

$$\frac{dp}{d\varphi} = \frac{k-1}{\omega V} \left(\omega \frac{dQ_{\rm T}}{d\varphi} + M_{\rm IIP} h_{\rm IIP} - M_{\rm YT} h_{\rm YT} - \frac{k}{k-1} \omega p \frac{dV}{d\varphi} \right);$$

$$\frac{dT}{d\varphi} = \frac{(k-1)T}{\omega p V} \left(\omega \frac{dQ_{\rm T}}{d\varphi} + \frac{k-1}{k} (M_{\rm IIP} - M_{\rm YT}) h_{\rm YT} + M_{\rm IIP} (h_{\rm IIP} - h_{\rm YT}) - \omega p \frac{dV}{d\varphi} \right),$$
(1)

где p — давление; φ — угол поворота ротора; k — показатель адиабаты; ω — угловая скорость ротора; V — объем; $Q_{\rm T}$ — подведенная внешняя теплота; $M_{\rm np}$, $h_{\rm np}$ — секундный приход и энтальпия притекающего газа; $M_{\rm yT}$, $h_{\rm yT}$ — уход газа из контрольного объема и энтальпия утекающего газа; T — температура.

Уравнения (1) получены из законов сохранения массы и энергии и уравнения состояния идеального газа. Уравнения (1) не содержат ограничений по режиму течения газа.

Этот метод можно назвать камерным, поскольку он предполагает постоянство параметров газа в пределах одного объема (камеры), позволяет определить параметры газа в любом положении роторов насоса. Массовый расход газа, притекающего в полость:

$$M_{\rm IIP} = m_{\rm BC} + m_{\rm HAF} + m_{\rm T} + m_{\rm pp} + m_{\rm pc},$$

где $m_{\rm Bc}$, $m_{\rm har}$, $m_{\rm T}$, $m_{\rm pp}$, $m_{\rm pc}$ — перетечки в расчетную полость из патрубка всасывания и полости нагнетания, через торцевую и межроторную щели, через зазор между корпусом и роторами соответственно.

Массовый расход утекающего газа из полости сжатия определяется аналогично.

Значения перетечек определяются по универсальной методике расчета проводимостей [14], работающей для каналов различной геометрии во всех режимах течения. Однако при высокой частоте вращения роторов скорость стенок каналов может существенно влиять на значения обратных перетечек, поэтому в таких случаях для расчета потока используют выражение, полученное в [15, 16]:

$$q = \frac{1}{3} (w_1 + w_2) \,\delta (p_{in} + p_{out}) + \frac{\sqrt{2}(p_{in}^2 - p_{out}^2)}{9\pi \,\mu \,(r_1 + r_2)} \,\delta^{5/2} (r_1 - r_2)^{1/2} \left(\frac{12\lambda_0}{\delta(p_{in} + p_{out})} + 1\right), \tag{2}$$

где w_1 , w_2 — скорости стенок канала; δ — зазор; p_{in} , p_{out} — давления на входе и выходе из канала; r_1 , r_2 — радиусы кривизны стенок канала в окрестностях зазора δ ; λ_0 — длина свободного пробега молекул газа.

Выражение (2) применяется в качестве первого приближения для решения дифференциального уравнения течения газа в канале. Полученные данные затем используются в математической модели.

Внешний отведенный или подведенный тепловой поток определяется уравнением

$$Q_{\rm T} = \alpha F_{\rm cT} (T_{\rm cT} - T), \qquad (3)$$

где $\alpha = \text{Nu} \lambda / l$ — коэффициент теплопередачи (λ — коэффициент теплопроводности среды, l — характерный размер); $F_{\text{ст}}$ — площадь стенки, с которой контактирует газ; $T_{\text{ст}}$ — температура стенки.

Коэффициент теплопередачи определяется критерием Нуссельта [17]

$$\mathrm{Nu} = B \operatorname{Re} + A,$$

где *B*, *A* — коэффициенты, зависящие от перепада давлений и угловой скорости роторов, полученные путем анализа данных экспериментального термометрирования насоса.

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2024. № 1

В расчете процесса теплообмена необходимо учитывать разрежение газа, поэтому по аналогии с [18] в расчет значения динамической вязкости вводится поправка

$$\mu = \frac{\mu_{aTM}}{1 + \beta Kn},\tag{4}$$

где µ_{атм} — динамическая вязкость газа при атмосферном давлении; Кп — число Кнудсена.

Параметры Кп и β связаны следующим образом:

Kn =
$$t - \frac{A}{(2-c_2)(3-c_2)t^{2-c_2}};$$

 $\beta = c_1 t^{c_2} + \frac{A}{c_1 c_2 (2-c_2)(3-c_2)t},$

где t — параметрическая переменная; $A = 0,15, c_1 = 1,479952, c_2 = 0,1551753.$

Геометрия рабочих элементов описывается математически с помощью параметрических уравнений. Для описания геометрии роторов большинства бесконтактных насосов используют уравнения эвольвент, эпициклоид и эллипсов.

Рис. 1. Схема бесконтактного ДВН Рутса:

 роторы; 2-4 — контрольные объемы (всасывание, перенос отсеченного объема газа и нагнетание соответственно); 5 — зазоры Рабочая полость разбивается на контрольные объемы (камеры). Для насоса Рутса рабочая полость условно разделяется на объемы в окрестностях патрубка всасывания и нагнетания и два отсеченных объема (рис. 1). Для каждого объема строится зависимость его значения от угла поворота роторов. Одновременно с этим рассчитываются площади теплообмена.

В основе модели лежат следующие допущения.

 Рабочее тело (откачиваемый газ) рассматривается как однородная сплошная среда, в которой отсутствуют конденсирующиеся пары.

2. В условиях вакуума воздух может с удовлетворительной точностью рассматриваться как идеальный газ, состояние которого описывается уравнением pV = mRT. 3. Под влиянием внешних факторов в пределах каждой полости параметры газа изменяются мгновенно.

4. Не учитываются газодинамические потери на трение газа о стенки рабочей полости.

5. Параметры газа перед всасывающим и за нагнетательным патрубками постоянны. Колебания давления во всасывающем и нагнетательном патрубках в процессе работы насоса не учитываются.

Для каждого рассматриваемого объема записывается система уравнений (1), которая может быть решена численным методом LSODE в пакете Mathematica. Начальными условиями являются давление и температура газа в откачиваемом объеме и параметры газа на выходе из насоса. В результате решения определяют зависимости давления и температуры в рассматриваемых объемах от угла поворота роторов.

Расчет ведется методом последовательных приближений. Зависимости давления и температуры от угла поворота в рабочих объемах, необходимые для расчета, в первом приближении неизвестны. Они задаются средними между давлениями на входе и выходе. При расчете следующего приближения в систему уравнений в качестве начальных условий подставляются параметры газа, полученные в результате решения на предыдущей итерации.

Обсуждение результатов. Итоговые индикаторные диаграммы для двухроторного насоса приведены на рис. 2. Сравнение результатов расчета с экспериментальными данными индицирования [19] показывает хорошую сходимость.

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2024. № 1

Интегрирование массового расхода, проходящего через входное сечение за один оборот, позволяет записать выражение для быстроты действия насоса во всем диапазоне давлений на входе

$$S_{\rm BX} = \frac{m_{\rm BX} R_{\rm F} T_{\rm BX}}{p_{\rm BX}} n, \tag{5}$$

где $m_{\rm BX} = \int_{0}^{2\pi} (M_{\rm BX \to cm} - M_{\rm Cm \to BX}) d\phi$ (индексы $\rm BX \to cm$, $\rm cm \to BX$ соот-

ветствуют перетечкам со входа насоса в полость сжатия и обратно); $R_{\rm r}$ — газовая постоянная; $T_{\rm BX}$, $p_{\rm BX}$ — температура и давление на входе в насос; n — частота вращения ротора.

Экспериментальные [20] и расчетные зависимости быстроты действия для ДВН приведены на рис. 3. Расхождение эксперимента и расчета для всех насосов не превышает 10 %.

Рис. 3. Экспериментальные (точки) и расчетные (кривые) зависимости быстроты действия от давления на входе ДВН

Заключение. Камерный метод расчета откачных характеристик бесконтактных объемных вакуумных насосов дает хорошую сходимость с результатами экспериментов, позволяет расширить диапазон рабочих давлений, что дает основания рекомендовать его использование при проектировании вакуумных насосов внешнего сжатия.

ЛИТЕРАТУРА

[1] АО «Вакууммаш»: веб-сайт. URL: https://vacma.ru (дата обращения: 21.06.2023).

Математическое моделирование рабочего процесса двухроторного вакуумного насоса Рутса

[2] Капустин Е.Н., Капустин А.Е., Бурмистров А.В. и др. Создание высокотехнологичного производства безмасляных спиральных вакуумных насосов в России. Вестник Казанского технологического университета, 2014, т. 17, № 19, с. 280–283.

[3] Raykov A., Salikeev S., Burmistrov A., et al. The working process of an oil-free claw vacuum pump. *Vak. Forschung und Prax.*, 2017, vol. 29, no. 2, pp. 45–49. DOI: http://doi.org/10.1002/vipr.201700643

[4] Mustafin T.N., Yakupov R.R., Burmistrov A.V., et al. Analysis of the screw compressor rotors' non-uniform thermal field effect on transmission error. *IOP Conf. Ser.: Mater. Sc.*, 2015, vol. 90, art. 012004. DOI: http://doi.org/10.1088/1757-899X/90/1/012004

[5] Бурмистров А.В. Создание и исследование бесконтактных вакуумных насосов. Дис. ... д-ра техн. наук. М., МГТУ им. Н.Э. Баумана, 2006.

[6] Райков А.А., Якупов Р.Р., Саликеев С.И. и др. Всережимная математическая модель рабочего процесса спирального вакуумного насоса. *Компрессорная техника и пневматика*, 2014, № 1, с. 18–25.

[7] Zhang Y., Zhao Y., Peng X. Three-dimensional CFD simulation of a Roots blower for the hydrogen circulating pump. *Int. Compressor Eng. Conf.*, 2018, paper 1645.

[8] Raykov A., Burmistrov A., Salikeev S., et al. Working process of Roots vacuum pumps. Development and verification of CFD model. *Vak. Forschung und Prax.*, 2021, vol. 33, no. 3, pp. 29–33. DOI: http://doi.org/10.1002/vipr.202100761

[9] Hsieh C., Zhou Q. Fluid analysis of cylindrical and screw type Roots vacuum pumps. *Vacuum*, 2015, vol. 121, pp. 274–282. DOI: http://doi.org/10.1016/j.vacuum.2015.04.037

[10] Sun S., Zhao D., Jia X., et al. Three-dimensional numerical simulation and experimental validation of flows in working chambers and inlet/outlet pockets of Roots pump. *Vacuum*, 2017, vol. 137, pp. 195–204.

DOI: http://doi.org/10.1016/j.vacuum.2017.01.005

[11] Singh G., Sun S., Kovacevic A., et al. Transient flow analysis in a Roots blower: experimental and numerical investigations. *Mech. Syst. Signal Process.*, 2019, vol. 134, art. 106305. DOI: http://doi.org/10.1016/j.ymssp.2019.106305

[12] Matuzovich M., Rane S., Patel B., et al. Analysis of conjugate heat transfer in a Roots blower and validation with infrared thermography. *Int. J. Thermofluids*, 2022, vol. 16, art. 100234. DOI: http://doi.org/10.1016/j.ijft.2022.100234

[13] Мамонтов М.А. Вопросы термодинамики тела переменной массы. Тула, Приокское книжн. изд-во, 1970.

[14] Salikeev S.I., Burmistrov A.V., Bronshtein M.D., et al. Conductance calculation of slot channels with variable cross section. From molecular to viscous flow regime. *Vak. Forschung und Prax.*, 2015, vol. 27, no. 1, pp. 36–40.

DOI: http://doi.org/10.1002/vipr.201500571

[15] Бронштейн М.Д., Райков А.А., Бурмистров А.В. и др. Расчет проводимости радиальных каналов с движущимися стенками при моделировании процессов бесконтактных вакуумных насосов. *Компрессорная техника и пневматика*, 2017, № 1, с. 30–34.

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2024. № 1

[16] Raykov A., Tyrin A., Burmistrov A., et al. Calculation of backward flow in channels with moving walls in oil free non-contact vacuum pumps. *AIP Conf. Proc.*, 2019, vol. 2141, no. 1, art. 030024. DOI: http://doi.org/10.1063/1.5122074

[17] Шарапов И.И. Разработка методики измерения и расчета параметров процесса теплообмена в шестеренчатом компрессоре с целью повышения точности рабочего процесса. Дис. ... канд. техн. наук. Казань, КГТУ, 2009.

[18] Li Z., Li L., Zhao Y., et al. Theoretical and experimental study of dry scroll vacuum pump. *Vacuum*, 2009, vol. 84, no. 3, pp. 415–421.

DOI: http://doi.org/10.1016/j.vacuum.2009.09.005

[19] Ибраев А.М. Повышение эффективности работы роторных нагнетателей внешнего сжатия на основе анализа влияния геометрических параметров на их характеристики. Дис. ... канд. техн. наук. Л., ЛПИ имени М.И. Калинина, 1987.

[20] Исаев А.А., Бурмистров А.В., Райков А.А. и др. Разработка и исследование двухроторного вакуумного насоса с эвольвентным профилем роторов. *Матер. тез.* XII Междунар. науч.-техн. конф. «Техника и технология нефтехимического и нефтегазового производства». Омск, ОмГТУ, 2022, с. 74–75.

Исаев Александр Анатольевич — аспирант кафедры «Вакуумная техника электрофизических установок» ФГБОУ ВО «КНИТУ» (Российская Федерация, 420015, г. Казань, ул. К. Маркса, д. 68); начальник сектора механических вакуумных насосов АО «Вакууммаш» (Российская Федерация, 420054, г. Казань, ул. Тульская, д. 58).

Райков Алексей Александрович — канд. техн. наук, доцент кафедры «Вакуумная техника электрофизических установок» ФГБОУ ВО «КНИТУ» (Российская Федерация, 420015, г. Казань, ул. К. Маркса, д. 68).

Бурмистров Алексей Васильевич — д-р техн. наук, профессор кафедры «Вакуумная техника электрофизических установок» ФГБОУ ВО «КНИТУ» (Российская Федерация, 420015, г. Казань, ул. К. Маркса, д. 68).

Саликеев Сергей Иванович — канд. техн. наук, доцент кафедры «Вакуумная техника электрофизических установок» ФГБОУ ВО «КНИТУ» (Российская Федерация, 420015, г. Казань, ул. К. Маркса, д. 68).

Просьба ссылаться на эту статью следующим образом:

Исаев А.А., Райков А.А., Бурмистров А.В. и др. Математическое моделировние рабочего процесса двухроторного вакуумного насоса Рутса. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение, 2024, № 1 (148), с. 55–68. EDN: FBFXCC

MATHEMATICAL SIMULATION OF THE ROOTS VACUUM PUMP OPERATION PROCESS

A.A. Isaev ^{1, 2}	isaevaa050391@yandex.ru
A.A. Raykov ¹	alraykov@kstu.ru
A.V. Burmistrov ¹	burm@kstu.ru
S.I. Salikeev ¹	salikeev_s@mail.ru

¹ Kazan National Research Technological University, Kazan, Russian Federation
² JSC "Vacuummash", Kazan, Russian Federation

Abstract	Keywords
The paper reviews main methods in mathematical	Roots vacuum pump, operation
simulation of the operation processes of the non-	process, mathematical simula-
contact vacuum pumps, in particular, the Roots exter-	tion, pumping characteristics,
nal compression machines. It shows that vast majority	indicator diagrams
of the models, including the CFD models, were devel-	
oped for the continuum conditions, and they are not	
applicable in the vacuum conditions. Using a system	
of differential equations based on the thermodynamic	
system energy balance of the working fluid variable	
mass, a mathematical model of the external compres-	
sion machine was developed. Equations were obtained	
from the laws of conservation of mass and energy,	
as well as from the equation of state of the ideal gas, and	
they did not contain restrictions on the gas flow regime.	
The system of equations was solved using the LSODE	
numerical method in the Mathematica package. Initial	
conditions were accepted as gas pressure and tempera-	
ture in the pumped volume and the gas parameters	
at the pump outlet. As a result, dependences of pressure	
and temperature in the volumes under consideration	
on the rotors rotation angle were found. The model	
took into account heat exchange between gas and the	
pump working chamber walls. Backflows through the	
rotor mechanism slot channels were determined ac-	
cording to the universal method for calculating conduc-	
tivities in channels of various geometries in the vis-	
cous, transition and molecular flow regimes. Results	
of mathematical simulation of the double-rotor pump	
pumping characteristics are presented, and they are	
compared with the experimental data. Validation was	
carried out both in terms of action speed and the ma-	
chine indicator diagrams. The developed mathematical	
simulation technique could be recommended in analyz-	

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2024. № 1

ing the influence of geometry and operating conditions	Received 21.07.2023
on pumping characteristics of the Roots non-contact	Accepted 12.09.2023
oil-free vacuum double-rotor pumps	© Author(s), 2024

REFERENCES

[1] JSC "Vacuummash": *website* (in Russ.). Available at: https://eng.vacma.ru (accessed: 21.06.2023).

[2] Kapustin E.N., Kapustin A.E., Burmistrov A.V., et al. Design of high-tech production of oil-free scroll vacuum pumps in Russia. *Vestnik Kazanskogo tekhnologicheskogo universiteta* [Herald of Kazan Technological University], 2014, vol. 17, no. 19, pp. 280–283 (in Russ.).

[3] Raykov A., Salikeev S., Burmistrov A., et al. The working process of an oil-free claw vacuum pump. *Vak. Forschung und Prax.*, 2017, vol. 29, no. 2, pp. 45–49. DOI: http://doi.org/10.1002/vipr.201700643

[4] Mustafin T.N., Yakupov R.R., Burmistrov A.V., et al. Analysis of the screw compressor rotors' non-uniform thermal field effect on transmission error. *IOP Conf. Ser.: Mater. Sc.*, 2015, vol. 90, art. 012004. DOI: http://doi.org/10.1088/1757-899X/90/1/012004

[5] Burmistrov A.V. Sozdanie i issledovanie beskontaktnykh vakuumnykh nasosov. Dis. d-ra tekh. nauk [Design and study of non-contact vacuum pumps. Dr. Sc. (Eng.), Diss.]. Moscow, BMSTU Publ., 2006 (in Russ.).

[6] Raykov A.A., Yakupov R.R., Salikeev S.I., et al. All-regimes mathematical model of scroll vacuum pump working process. *Kompressornaya tekhnika i pnevmatika* [Compressors & Pneumatics], 2014, no. 1, pp. 18–25 (in Russ.).

[7] Zhang Y., Zhao Y., Peng X. Three-dimensional CFD simulation of a Roots blower for the hydrogen circulating pump. *Int. Compressor Eng. Conf.*, 2018, paper 1645.

[8] Raykov A., Burmistrov A., Salikeev S., et al. Working process of Roots vacuum pumps. Development and verification of CFD model. *Vak. Forschung und Prax.*, 2021, vol. 33, no. 3, pp. 29–33. DOI: http://doi.org/10.1002/vipr.202100761

[9] Hsieh C., Zhou Q. Fluid analysis of cylindrical and screw type Roots vacuum pumps. *Vacuum*, 2015, vol. 121, pp. 274–282. DOI: http://doi.org/10.1016/j.vacuum.2015.04.037

[10] Sun S., Zhao D., Jia X., et al. Three-dimensional numerical simulation and experimental validation of flows in working chambers and inlet/outlet pockets of Roots pump. *Vacuum*, 2017, vol. 137, pp. 195–204.

DOI: http://doi.org/10.1016/j.vacuum.2017.01.005

[11] Singh G., Sun S., Kovacevic A., et al. Transient flow analysis in a Roots blower: experimental and numerical investigations. *Mech. Syst. Signal Process.*, 2019, vol. 134, art. 106305. DOI: http://doi.org/10.1016/j.ymssp.2019.106305

[12] Matuzovich M., Rane S., Patel B., et al. Analysis of conjugate heat transfer in a Roots blower and validation with infrared thermography. *Int. J. Thermofluids*, 2022, vol. 16, art. 100234. DOI: http://doi.org/10.1016/j.ijft.2022.100234

[13] Mamontov M.A. Voprosy termodinamiki tela peremennoy massy [Thermodynamic issues of a variable mass body]. Tula, Priokskoe knizhn. izd-vo Publ., 1970.

[14] Salikeev S.I., Burmistrov A.V., Bronshtein M.D., et al. Conductance calculation of slot channels with variable cross section. From molecular to viscous flow regime. *Vak. Forschung und Prax.*, 2015, vol. 27, no. 1, pp. 36–40.

DOI: http://doi.org/10.1002/vipr.201500571

[15] Bronshteyn M.D., Raykov A.A., Burmistrov A.V., et al. Conductance calculation of radial channels with moving walls for processes modeling in contactless vacuum pumps. *Kompressornaya tekhnika i pnevmatika* [Compressors & Pneumatics], 2017, no. 1, pp. 30–34 (in Russ.).

[16] Raykov A., Tyrin A., Burmistrov A., et al. Calculation of backward flow in channels with moving walls in oil free non-contact vacuum pumps. *AIP Conf. Proc.*, 2019, vol. 2141, no. 1, art. 030024. DOI: http://doi.org/10.1063/1.5122074

[17] Sharapov I.I. Razrabotka metodiki izmereniya i rascheta parametrov protsessa teploobmena v shesterenchatom kompressore s tselyu povysheniya tochnosti rabochego protsessa. Dis. kand. tekh. nauk [Development of a methodology for measuring and calculating the parameters of the heat exchange process in a gear compressor in order to improve the accuracy of the working process. Cand. Sc. (Eng.). Diss.]. Kazan, KSTU, 2009 (in Russ.).

[18] Li Z., Li L., Zhao Y., et al. Theoretical and experimental study of dry scroll vacuum pump. *Vacuum*, 2009, vol. 84, no. 3, pp. 415–421.

DOI: http://doi.org/10.1016/j.vacuum.2009.09.005

[19] Ibraev A.M. Povyshenie effektivnosti raboty rotornykh nagnetateley vneshnego szhatiya na osnove analiza vliyaniya geometricheskikh parametrov na ikh kharakteristiki. Dis. kand. tekh. nauk [Increase of efficiency of rotary external compression blowers on the basis of the analysis of influence of geometrical parameters on their characteristics. Cand. Sc. (Eng.). Diss.]. Leningrad, LPI imeni M.I. Kalinina, 1987 (in Russ.).

[20] Isaev A.A., Burmistrov A.V., Raykov A.A., et al. [Development and research of the double-rotor vacuum pump with involute profile of rotors.]. *Mater. tez. XII Mezhdunar. nauch.-tekh. konf.* "*Tekhnika i tekhnologiya neftekhimicheskogo i neftegazovogo proizvod-stva*" [Technics and technology of petrochemical and oil-and-gas production. Proc. 12th Int. Sc. Tech. Conf.]. Omsk, OmSTU Publ., 2022, pp. 74–75 (in Russ.).

Isaev A.A. — Post-Graduate Student, Department of Vacuum Engineering, Kazan National Research Technological University (K. Marksa ul. 68, Kazan, 420015 Russian Federation); Head of the Mechanical Vacuum Pumps Sector, JSC "Vacuummash" (Tulskaya ul. 58, Kazan, 420054 Russian Federation).

Raykov A.A. — Cand. Sc. (Eng.), Assoc. Professor, Department of Vacuum Engineering, Kazan National Research Technological University (K. Marksa ul. 68, Kazan, 420015 Russian Federation).

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2024. № 1

Burmistrov A.V. — Dr. Sc. (Eng.), Professor, Department of Vacuum Engineering, Kazan National Research Technological University (K. Marksa ul. 68, Kazan, 420015 Russian Federation).

Salikeev S.I. — Cand. Sc. (Eng.), Assoc. Professor, Department of Vacuum Engineering, Kazan National Research Technological University (K. Marksa ul. 68, Kazan, 420015 Russian Federation).

Please cite this article in English as:

Isaev A.A., Raykov A.A., Burmistrov A.V., et al. Mathematical simulation of the Roots vacuum pump operation process. *Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering*, 2024, no. 1 (148), pp. 55–68 (in Russ.). EDN: FBFXCC