УДК 62-523.3

Д. Н. Попов, А. А. Таха

ПРОЕКТИРОВАНИЕ ЭЛЕКТРОГИДРАВЛИЧЕС-КОГО СЛЕДЯЩЕГО ПРИВОДА С НЕОПРЕДЕЛЕН-НЫМИ И НЕСТАЦИОНАРНЫМИ НАГРУЗКАМИ НА ВЫХОДНОЕ ЗВЕНО

Рассмотрена задача выбора структуры и параметров электрогидравлического следящего привода с оптимальными динамическими характеристиками в условиях неопределенности и нестационарности нагрузки, действующей на выходное звено. Построена эталонная линейная модель привода. Нелинейная математическая модель следящего привода составлена для двух видов гидроцилиндра: симметричного и дифференциального. При анализе устойчивости электрогидравлического следящего привода проведена оценка влияния изменения нагрузки на его выходное звено. Подготовлена методика проектирования робастного в отношении нагрузки на выходное звено привода.

Эталонная модель ЭГСП. Задачу оптимального управления линейными механическими системами достаточно эффективно можно решить численными методами [1]. В случае нелинейных систем с нестабильными параметрами задача оптимального управления усложняется и требует дополнительных исследований [2, 3]. К таким системам относятся электрогидравлические следящие приводы (ЭГСП) с дроссельным регулированием, широко применяемые для управления различными техническими объектами. Методы управления, использующие эталонную модель, дают возможность уменьшить чувствительность системы к внутренним параметрическим возмущениям и обеспечить компенсацию нелинейностей при оптимальном управлении на конечном интервале времени [4]. В дополнение к этим методам, эталонная модель применяется для синтеза структуры и параметров ЭГСП с учетом нелинейности и неопределенности его характеристик. Выбор эталонной модели ЭГСП зависит от требований, предъявляемых к времени переходного процесса, максимальной динамической ошибке и др. Электрогидравлический следящий привод, для которого необходимо найти эталонную модель, состоит из гидроцилиндра (ГЦ) с равными значениями рабочих площадей в полостях (симметричной ГЦ), электрогидравлического усилителя (ЭГУ) и датчика перемещения (рис. 1). Математическое описание динамических процессов в таком

Рис. 1. Схема ЭГСП с обратной связью по перемещению штока гидроцилиндра

ЭГСП можно представить следующими уравнениями [5]:

$$\frac{dp_{\rm H}}{dt} = \frac{2B_{\rm K}}{V_0} \left(Q_{\rm 3} - F_{\rm H}\frac{dy}{dt}\right); \quad F_{\rm H}p_{\rm H} = m\frac{d^2y}{dt^2} + \kappa_{\rm rp}\frac{dy}{dt} + P_{\rm f}$$

где $p_{\rm H} = p_1 - p_2$ — вызванная действием нагрузки разность давлений в полостях ГЦ; $B_{\rm m}$ — модуль объемной упругости жидкости; V_0 объем жидкости в одной полости ГЦ при среднем положении поршня; Q_3 — расход жидкости через распределительный золотник ЭГУ; $F_{\rm u}$ рабочая площадь поршня ГЦ; y — перемещение штока ГЦ; m — сумма масс поршня, штока ГЦ и приведенной к штоку массы управляемой нагрузки; $\kappa_{\rm rp}$ — коэффициент вязкого трения; P_f — внешняя сила.

Из этих уравнений, если далее не учитывать влияние $p_{\rm H}$ на $Q_{\rm 3}$, нетрудно получить передаточную функцию нагруженного ГЦ:

$$W = \frac{y}{Q_{3} - K_{y}sP_{f}} = \frac{1}{F_{u}s(T_{u}^{2}s^{2} + 2\varsigma_{u}T_{u}s + 1)},$$

где $T_{\mu} = \sqrt{\frac{mV_0}{2F_{\mu}^2 B_{\pi}}}$ — механическая постоянная времени ГЦ; $\varsigma_{\mu} = \frac{\kappa_{\rm rp}V_0}{4F_{\mu}^2 B_{\pi}T_{\mu}}$ — коэффициент относительного демпфирования; $K_{\rm y} = \frac{V_0}{2F_{\mu}B_{\pi}}$ — коэффициент; $s = \frac{d}{dt}$.

Передаточная функция обмотки управления электромеханического преобразователя (ЭМП), которая подключена к электронному усилителю (ЭУ), имеет вид [5]

$$W_{iu} = \frac{i_{\rm y}}{u_{\rm yc}} = \frac{K_{iu}}{T_{\rm y}s + 1}$$

а передаточную функцию ЭГУ часто записывают как

$$W_{\Im \Gamma Y} = \frac{Q_3}{i_y} = \frac{K_{Qi}}{T_{\Im \Gamma Y}^2 s^2 + 2\varsigma_{\Im \Gamma Y} T_{\Im \Gamma Y} s + 1},$$

здесь $u_{\rm yc}$ — напряжение на выходе ЭУ; $T_{\rm y} = \frac{L_{\rm y}}{R_{\rm y} + R_{\rm вых}}$ — постоянная

времени обмотки управления; R_y , L_y и i_y – сопротивление, индуктивность и ток обмоток управления; $R_{\text{вых}}$ – активное сопротивление выходного канала ЭУ; $T_{\Im\Gamma Y} = \frac{1}{\omega_{\Im\Gamma Y}}$ – постоянная времени ЭГУ; $\omega_{\Im\Gamma Y}$ и $\varsigma_{\Im\Gamma Y}$ – собственная частота и коэффициент демпфирования ЭГУ; $K_{iu} = \frac{1}{R_y + R_{\text{вых}}}$ – коэффициент передачи обмотки управления; K_{Qi} – коэффициент передачи ЭГУ.

Для компьютерного моделирования ЭГСП с помощью приведенных передаточных функций построена структурная схема (рис. 2, *a*). При моделировании определяли переходную и частотную характеристики замкнутого контура ЭГСП с параметрами: $Q_{3\max} = 5 \cdot 10^{-4} \text{ m}^3/\text{c}$; $p_{\Pi\max} = 15 \text{ МПа}$; $y_{\max} = 1,85\text{м}$; $F_{\Pi} = 4 \cdot 10^{-3} \text{ m}^2$; $V_0 = 3,7 \cdot 10^{-3} \text{ m}^3$; $R_y = 140 \text{ Ом}$; $R_{\text{вых}} = 1000 \text{ Ом}$; $I_{y\max} = 20 \text{ мA}$; $L_y = 0,44 \text{ Гн}$; $\omega_{\text{ЭГУ}} = 578 \text{ рад/с}$; $\varsigma_{\text{ЭГУ}} = 3,3$; m = 2000 кг; $\kappa_{\text{тр}} = 1,06 \cdot 10^5 \text{ Hc/m}$; $B_{\pi} = 1250 \text{ МПа}$; $P_{\text{сл}} = 0$; $K_{Qi} = 0,3$; $K_{yc} = 3,8$; $K_u = 0,25$; $K_{\text{oc}} = 8,11 \text{ B/m} - \text{коэффициент обратной связи.}$

Рис. 2. Структурная схема ЭГСП:

a — с обратной связью по перемещению штока гидроцилиндра; δ — с обратными связями по переменным состояния

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. "Машиностроение". 2007. № 1 101

Рис. 3. Переходные и частотные характеристики замкнутого контура ЭГСП: *a* – с обратной связью по перемещению гидроцилиндра; *б* – с обратными связями по переменным состояния

Из переходной и частотной характеристик ЭГСП следует, что необходимо уменьшить время установления процесса (рис. 3, *a*). Для этого достаточно увеличить коэффициент усиления K_{yc} . Однако существенное увеличение коэффициента усиления ограничено условием устойчивости, в связи с чем была рассмотрена задача оптимального управления ЭГСП с применением регуляторов переменных состояния. Решение получено с помощью уравнения Риккати и уравнения управления системой [4, 6]:

$$\mathbf{P}\mathbf{A} + \mathbf{A}^{\mathrm{T}} \mathbf{P} - \mathbf{P}\mathbf{B}\mathbf{R}^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{P} + \mathbf{Q} = 0; \quad \mathbf{u} = -\mathbf{K}\mathbf{x},$$

где $\mathbf{K} = \mathbf{R}^{-1} \mathbf{B}^{\mathsf{T}} \mathbf{P}$ — матрица коэффициентов регуляторов переменных состояния; \mathbf{P} — неотрицательная определенная симметричная матрица; \mathbf{Q} и \mathbf{R} — положительно определенные симметричные весовые матрицы. В данном случае матрица $\mathbf{Q} = \mathbf{I}$ — единичная матрица и $\mathbf{R}^{-1} = \frac{1}{r}$, где r = 3 — весовой коэффициент.

Корр'ектирующие устройства можно спроектировать на основе поисковых методов оптимизации.

Стандартная форма уравнений состояния линейной стационарной непрерывной системы имеет вид:

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t); \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t),$$

где $\frac{d\mathbf{x}(t)}{dt}$ — производная по времени от вектора $\mathbf{x}(t)$ состояния размерности $(n \times 1)$; **А** — матрица коэффициентов системы $(n \times n)$; **В** — матрица входа $(n \times m)$; **С** — матрица выхода $(r \times n)$; $\mathbf{u}(t)$ — вектор входа размерности $(m \times 1)$; $\mathbf{y}(t)$ — вектор выхода размерности $(r \times 1)$.

После определения коэффициентов регуляторов состояния построена структурная схема ЭГСП (рис. 2, δ). Из схемы видно, что использовались только три переменных состояния: перемещение, скорость и ускорение штока ГЦ. Это допустимо при частоте пропускаемого сигнала ЭГУ, в 5...10 раз превышающей собственную частоту ГЦ. Переходные и частотные характеристики, вычисленные с помощью структурной схемы ЭГСП, приведены на рис. 3, δ . Переходные характеристики показывают, что быстродействие ЭГСП значительно увеличилось.

Оценка влияния переменной нагрузки на выходное звено ЭГСП проведена в соответствии с алгоритмом (рис. 4). В этой блок-схеме неопределенную модель ЭГСП описывают следующие уравнения [2, 3]:

$$\frac{d\mathbf{x}}{dt} = (\mathbf{A} + \Delta \mathbf{A})\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t);$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t),$$

где Δ — диапазон неопределенности при изменении нагрузки на выходное звено ЭГСП в пределах ± 25 %.

Рис. 4. Блок-схема программы оценки влияния переменной нагрузки на выходное звено ЭГСП

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. "Машиностроение". 2007. № 1 103

Рис. 5. Переходные и частотные характеристики замкнутого контура ЭГСП при разной нагрузке на его выходное звено

В результате вычислены переходные и частотные характеристики выбранной модели ЭГСП, которые подтверждают, что динамические характеристики модели не изменяются, когда меняется нагрузка на выходное звено ЭГСП (рис. 5). Для дальнейшего исследования структурную схему (см. рис. 2, δ) эталонной модели оптимального ЭГСП можно представить как в форме "вход-выход":

$$\frac{y}{u} =$$

 $5,16 \cdot 10^{12}$

 $-\frac{53s^5+3,395\cdot10^5s^4+5,417\cdot10^8s^3+4,77\cdot10^{10}s^2+4,191\cdot10^{12}s+4,526\cdot10^{13}}{13},$ так и в переменных состояния

$$\begin{aligned} \frac{d\mathbf{x}_e(t)}{dt} &= \mathbf{A}_e \mathbf{x}_e(t) + \mathbf{B}_e \mathbf{u}(t);\\ \mathbf{y}(t) &= \mathbf{C}_e \ \mathbf{x}_e(t), \end{aligned}$$

где \mathbf{A}_e , \mathbf{B}_e , и \mathbf{C}_e — матрицы коэффициентов входа и выхода эталонной модели,

$$\mathbf{A}_{e} = \begin{pmatrix} -6406 & -2495 & -429,1 & -147,3 & -49,7 \\ 409 & 0 & 0 & 0 & 0 \\ 0 & 512 & 0 & 0 & 0 \\ 0 & 0 & 250 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix};$$
$$\mathbf{B}_{e} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}; \quad \mathbf{C}_{e} = \begin{bmatrix} 0 & 0 & 0 & 3,048 \end{bmatrix}.$$

Синтез оптимального ЭГСП с учетом нелинейности его характеристик. Проблема синтеза реального ЭГСП усложняется из-за наличия нелинейностей, которые влияют на устойчивость и качество управления ЭГСП, особенно при изменении нагрузки на выходное звено. Необходимо, кроме того, учитывать возможное различие в конструкции ЭГСП вследствие использования симметричного и дифференциального ГЦ.

 $\left(0 \right)$

ЭГСП с симметричным гидроцилиндром. Дифференциальные уравнения ЭГСП с учетом нелинейности расходно-перепадной характеристики в случае симметричного гидроцилиндра можно представить в виде [5, 8]

$$\begin{split} \frac{d^2 y}{dt^2} &= \frac{F_{\mathrm{u}}}{m} p_{\mathrm{H}} - \frac{\kappa_{\mathrm{rp}}}{m} \frac{dy}{dt} - \frac{P_f}{m}; \quad \frac{dp_{\mathrm{H}}}{dt} = \frac{2B_{\mathrm{x}}}{V_0} \Big(Q_3 - F_{\mathrm{u}} \frac{dy}{dt} - C_{\mathrm{y}} p_{\mathrm{H}} \Big); \\ Q_3 &= \kappa_3' x_3 \sqrt{p_{\mathrm{II}} - p_{\mathrm{H}} \operatorname{sign}(x_3)}; \\ \frac{d^2 x_3}{dt^2} &= -\omega_{\mathrm{SFY}}^2 x_3 - 2\varsigma_{\mathrm{SFY}} \omega_{\mathrm{SFY}} \frac{dx_3}{dt} + K_{xu} \omega_{\mathrm{SFY}}^2 u, \end{split}$$

где C_y — коэффициент утечки в гидроцилиндре; $K_{xu} = K_{Qi} \cdot K_{iu} \cdot K_{xQ}$ — коэффициент; $K_{xQ} = \frac{x_{3 \max}}{Q_{3 \max}}$.

По этим уравнениям вычислены переходные характеристики, приведенные на рис. 6, *a*, где видны слабо затухающие колебания, что свидетельствует о близости к границе устойчивости нелинейного ЭГСП

Рис. 6. Переходные характеристики нелинейного ЭГСП в случае симметричного гидроцилиндра:

а — без регулятора; б — с эталонной моделью и регулятором

без дополнительного регулятора. Вследствие чего задача устойчивости была решена вторым методом Ляпунова. Одновременно для расчета коэффициентов регулятора была использована эталонная модель, которая принята в системе управления ЭГСП с нелинейными характеристиками, чтобы обеспечивать переходные характеристики, близкие к эталонной модели. Приведенные нелинейные уравнения преобразованы следующим образом:

$$\begin{split} x_1 &= y, \ x_2 = \dot{y}, \ x_3 = p_{\rm H}, \ x_4 = x_3, \ x_5 = \dot{x}_4; \\ \dot{x}_1 &= x_2; \ \dot{x}_2 = \frac{F_{\rm II}}{m} x_3 - \frac{\kappa_{\rm rp}}{m} x_2 - \frac{P_f}{m}; \ \dot{x}_3 = \frac{2B_{\rm x}}{V_0} (Q_3 - F_{\rm II} x_2 - C_y x_3); \\ Q_3 &= \kappa'_3 x_4 \sqrt{p_{\rm II} - x_3 {\rm sign}(x_4)}; \ \dot{x}_4 = x_5; \\ \dot{x}_5 &= -\omega_{\rm 2\Gamma Y}^2 x_4 - 2\varsigma_{\rm 2\Gamma Y} \omega_{\rm 2\Gamma Y} x_5 + K_{xu} \omega_{\rm 2\Gamma Y}^2 u. \end{split}$$

Используя эти уравнения, можно найти функцию Ляпунова, записанную для ошибки e_i между переменами x_i состояния реальной системы и переменами x_{ei} состояния эталонной модели. Предварительно полезно построить структурную схему реальной системы ЭГСП и эталонной модели вместе (рис. 7). Согласно этой схеме получается сигнал ошибки, в соответствии с которой регулятор обеспечивает выполнение критерия [4, 9]

$$\lim_{t \to \infty} e_i(t) = 0$$

при $e_i = x_i - x_{ei}$, где $i = 1 \dots 5$.

Функцию Ляпунова выбирают в форме, используемой в критерии оптимизации.

При i=1 $V_1=rac{1}{2}e_1^2;$ $V_1>0,$ когда $e_1
eq 0.$ Для устойчивости

Рис. 7. Структурная схема нелинейного ЭГСП с эталонной моделью и регулятором

исследуемой системы необходимо, чтобы выполнялось неравенство $\frac{dV_1}{dt} < 0$, причем

$$\frac{dV_1}{dt} = \frac{\partial e_1}{\partial x_1} \cdot \frac{dx_1}{dt} = \frac{\partial e_1}{\partial x_1} \cdot e_1,$$

где $\frac{dx_1}{dt} = f(e_1),$

$$\dot{V}_1 = e_1 \dot{e}_1 = e_1 (\dot{x}_1 - \dot{x}_{e1})$$

при $\dot{x}_1 = x_2 = \dot{x}_{e1} - K_1 e_1$,

$$\dot{V}_1 = -K_1 e_1^2 \le 0,$$

 $\dot{x}_{e1} = x_2 + K_1 e_1.$ (1)

При i = 2

$$V_2 = V_1 + \frac{1}{2}e_2^2 \Rightarrow \dot{V}_2 = \dot{V}_1 + e_2\dot{e}_2 = \dot{V}_1 + e_2(\dot{x}_2 - \dot{x}_{e2}),$$

когда

$$\dot{x}_{e2} = \frac{F_{\mathrm{u}}}{m} x_3 - \frac{\kappa_{\mathrm{rp}}}{m} x_2 - \frac{P_f}{m} + K_2 e_2, \qquad (2)$$
$$\dot{V}_2 = -K_1 e_1^2 - K_2 e_2^2 \le 0.$$

При i = 3

$$V_3 = V_2 + \frac{1}{2}e_3^2 \Rightarrow \dot{V}_3 = \dot{V}_2 + e_3\dot{e}_3 = \dot{V}_2 + e_3(\dot{x}_3 - \dot{x}_{e3}),$$

когда

$$\dot{x}_{e3} = \frac{2B_{\star}}{V_{t}} (Q_{3}(x_{3}, x_{4}) - F_{\mathfrak{ll}}x_{2} + C_{y}x_{3}) + K_{3}e_{3}, \qquad (3)$$
$$\dot{V}_{3} = -K_{1}e_{1}^{2} - K_{2}e_{2}^{2} - K_{3}e_{3}^{2} \le 0.$$

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. "Машиностроение". 2007. № 1 107

При i = 4

$$V_4 = V_3 + \frac{1}{2}e_4^2 \Rightarrow \dot{V}_4 = \dot{V}_3 + e_4\dot{e}_4 = \dot{V}_3 + e_4(\dot{x}_4 - \dot{x}_{e4}),$$

когда

$$\dot{x}_{e4} = x_5 + K_4 e_4, \tag{4}$$

$$\dot{V}_4 = -K_1 e_1^2 - K_2 e_2^2 - K_3 e_3^2 - K_4 e_4^2 \le 0.$$

При i = 5

$$V_5 = V_4 + \frac{1}{2}e_5^2 \Rightarrow \dot{V}_5 = \dot{V}_4 + e_5\dot{e}_5 = \dot{V}_4 + e_5(\dot{x}_5 - \dot{x}_{e5}),$$

когда

$$\dot{x}_{e5} = K_{xu}\omega_{\Im\Gamma\Upsilon}^2 u - \omega_{\Im\Gamma\Upsilon}^2 x_4 - 2\zeta_{\Im\Gamma\Upsilon}\omega_{\Im\Gamma\Upsilon} x_5 + K_5 e_5,$$
(5)
$$\dot{V}_5 = -K_1 e_1^2 - K_2 e_2^2 - K_3 e_3^2 - K_4 e_4^2 - K_5 e_5^2 \le 0.$$

Если законы управления, соответствующие уравнениям (1)–(5), придают производным отрицательные или тождественно равные нулю значения, то невозмущенное движение устойчиво.

Чтобы определить коэффициенты $K_i(i = 1, 2, 3, 4, 5)$ регулятора, необходимо с помощью эталонной модели определить алгоритм настройки матрицы K_i , воспользовавшись уравнениями (1)–(5) [4, 7]. При этом

$$\dot{\mathbf{e}}(t) = \mathbf{A}_e \mathbf{e}(t) + \mathbf{B}_e \mathbf{\Theta}(t) \mathbf{\Sigma}(t), \tag{6}$$

где $\Theta(t) = (\Phi(t), \Psi(t))$ — расширенная матрица отклонений настраиваемых коэффициентов от их первоначальных значений; $\Sigma(t) = \sum_{x \in T} \frac{1}{2} \sum_{x \in T} \frac{1}{2}$

 $= \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{y}(t) + \mathbf{K}\mathbf{x}(t) \end{bmatrix} -$ вектор измеряемых переменных. Алгоритм адаптации выбирается в следующем виде [4]:

$$\dot{\boldsymbol{\Theta}} = -\boldsymbol{\Gamma} \mathbf{B}_{e}^{\mathrm{T}} \mathbf{H} \mathbf{E} \boldsymbol{\Sigma}^{\mathrm{T}}(t), \quad \boldsymbol{\Gamma} = \boldsymbol{\Gamma}^{\mathrm{T}} > 0, \tag{7}$$

тогда функция V будет удовлетворять условиям V > 0, $\dot{V} < 0$. Последнее утверждение следует из матрицы A_e , для которой в силу теоремы Ляпунова существует $\mathbf{H} = \mathbf{H}^{\mathsf{T}} > 0$, удовлетворяющее матричному уравнению

$$\mathbf{A}_{e}^{\mathrm{T}} \mathbf{H} + \mathbf{H} \mathbf{A}_{e} = -\mathbf{Q}, \quad \mathbf{Q} = \mathbf{Q}^{\mathrm{T}} > 0.$$
(8)

В результате решения уравнений (6)–(8) были вычислены коэффициенты регулятора, построена структурная схема; путем компьютерного моделирования получены переходные характеристики при действии различных нагрузок на выходное звено ЭГСП (см. рис. 6, δ). Из рисунка следует, что переходные характеристики практически не меняются при различных нагрузках на выходное звено.

ЭГСП с дифференциальным гидроцилиндром. Математическую модель таких ЭГСП можно представить следующими нелинейными дифференциальными уравнениями:

108 ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. "Машиностроение". 2007. № 1

при x₃ > 0 – выдвижение штока ГЦ :

$$\begin{split} \frac{d^2y}{dt^2} &= \frac{F_1}{m} p_1 - \frac{F_2}{m} p_2 - \frac{\kappa_{\rm rp}}{m} \frac{dy}{dt} - \frac{P_f}{m};\\ \frac{dp_1}{dt} &= \frac{B_{\rm x}}{F_1 y + V_{01}} \Big(-F_1 \frac{dy}{dt} + \kappa_3' x_3 \sqrt{|p_{\rm II} - p_1|} \text{sign}(p_{\rm II} - p_1) - \\ -C_{\rm y}(p_1 - p_2) \Big); \end{split}$$

$$\begin{aligned} \frac{dp_2}{dt} &= \frac{B_{\mathbf{x}}}{F_2(L-y) + V_{02}} \Big(F_2 \frac{dy}{dt} - \kappa'_3 x_3 \sqrt{|p_2|} \mathrm{sign}(p_2) + \\ &+ C_{\mathbf{y}}(p_2 - p_1) \Big); \end{aligned}$$

$$\frac{d^2 x_3}{dt^2} = -\omega_{\Im \Gamma Y}^2 x_3 - 2\varsigma_{\Im \Gamma Y} \omega_{\Im \Gamma Y} \frac{dx_3}{dt} + K_{xu} \omega_{\Im \Gamma Y}^2 u,$$

при x₃ < 0 – втягивание штока ГЦ :

$$\begin{split} \frac{d^2 y}{dt^2} &= -\frac{F_1}{m} p_1 + \frac{F_2}{m} p_2 - \frac{\kappa_{\rm rp}}{m} \frac{dy}{dt} + \frac{P_f}{m};\\ \frac{dp_2}{dt} &= \frac{B_{\rm sc}}{F_2 y + V_{02}} \Big(-F_2 \frac{dy}{dt} + \kappa_3' x_3 \sqrt{|p_{\rm II} - p_2|} \text{sign}(p_{\rm II} - p_2) - C_y(p_2 - p_1) \Big);\\ \frac{dp_1}{dt} &= \frac{B_{\rm sc}}{F_1(L - y) + V_{01}} \Big(F_1 \frac{dy}{dt} - \kappa_3' x_3 \sqrt{|p_1|} \text{sign}(p_1) + C_y(p_2 - p_1) \Big);\\ \frac{d^2 x_3}{dt^2} &= -\omega_{\Im \Gamma Y}^2 x_3 - 2\varsigma_{\Im \Gamma Y} \omega_{\Im \Gamma Y} \frac{dx_3}{dt} + K_{xu} \omega_{\Im \Gamma Y}^2 u. \end{split}$$

Рассчитанные по этим уравнениям переходные характеристики показывают, что во втором случае процесс близок неустойчивому (рис. 8, *a*). Нелинейную модель можно применить для определения функции Ляпунова для каждого из рассмотренных двух случаев, когда $x_1 = y, x_2 = \dot{y}, x_3 = p_1, x_4 = p_2, x_5 = x_3, x_6 = \dot{x}_3$.

Соответственно имеем:

при $x_3 < 0$

$$\begin{split} \dot{x}_{e1} &= x_2 + K_1 e_1; \\ \dot{x}_{e2} &= -\frac{F_1}{m} p_1 + \frac{F_2}{m} p_2 - \frac{\kappa_{\rm rp}}{m} \frac{dy}{dt} + \frac{P_f}{m} + K_2 e_2; \\ \dot{x}_{e3} &= \frac{B_{\rm sc}}{F_1 (L-y) + V_{01}} \Big(F_1 \frac{dy}{dt} - \kappa'_3 x_3 \sqrt{|p_1|} {\rm sign}(p_1) + \\ &+ C_{\rm y}(p_2 - p_1) \Big) + K_3 e_3; \end{split}$$

а и *б* – см. рис. 6

$$\begin{split} \dot{x}_{e4} &= \frac{B_{\mathrm{m}}}{F_{2}y + V_{02}} \Big(-F_{2} \frac{dy}{dt} + \kappa_{3}' x_{3} \sqrt{|p_{\mathrm{n}} - p_{2}|} \mathrm{sign}(p_{\mathrm{n}} - p_{2}) - \\ &- C_{\mathrm{y}}(p_{2} - p_{1}) \Big) + K_{4} e_{4}; \\ \dot{x}_{e5} &= x_{6} + K_{5} e_{5}; \\ \dot{x}_{e6} &= -\omega_{\mathrm{Э}\Gamma\mathrm{y}}^{2} x_{3} - 2\varsigma_{\mathrm{Э}\Gamma\mathrm{y}} \omega_{\mathrm{Э}\Gamma\mathrm{y}} \frac{dx_{3}}{dt} + \omega_{\mathrm{Э}\Gamma\mathrm{y}}^{2} u; \\ u &= \frac{1}{K_{xu}} (\dot{x}_{e6} + \omega_{\mathrm{Э}\Gamma\mathrm{y}}^{2} x_{e5} + 2\varsigma_{\mathrm{Э}\Gamma\mathrm{y}} \omega_{\mathrm{Э}\Gamma\mathrm{y}} x_{e6}); \\ \mathrm{при} \ x_{3} > 0 \\ \dot{x}_{e1} &= x_{2} + K_{1} e_{1}; \\ \dot{x}_{e2} &= \frac{F_{1}}{m} p_{1} - \frac{F_{2}}{m} p_{2} - \frac{\kappa_{\mathrm{rp}}}{m} \frac{dy}{dt} - \frac{P_{f}}{m} + K_{2} e_{2}; \\ \dot{x}_{e3} &= \frac{B_{\mathrm{m}}}{F_{1}y + V_{01}} \Big(-F_{1} \frac{dy}{dt} + \kappa_{3}' x_{3} \sqrt{|p_{\mathrm{n}} - p_{1}|} \mathrm{sign}(p_{\mathrm{n}} - p_{1}) - \\ &- C_{\mathrm{y}}(p_{1} - p_{2}) \Big) + K_{3} e_{3}; \end{split}$$

$$\begin{split} \dot{x}_{e4} &= \frac{B_{\mathbf{x}}}{F_2(L-y) + V_{02}} \Big(F_2 \frac{dy}{dt} - \kappa'_3 x_3 \sqrt{|p_2|} \mathrm{sign}(p_2) + \\ &+ C_{\mathbf{y}}(p_1 - p_2) \Big) + K_4 e_4; \\ \dot{x}_{e5} &= x_6 + K_5 e_5; \\ \dot{x}_{e6} &= -\omega_{\Im \Gamma \mathbf{y}}^2 x_3 - 2\varsigma_{\Im \Gamma \mathbf{y}} \omega_{\Im \Gamma \mathbf{y}} \frac{dx_3}{dt} + \omega_{\Im \Gamma \mathbf{y}}^2 u; \\ u &= \frac{1}{K_{xu} \omega_{\Im \Gamma \mathbf{y}}^2} (\dot{x}_{e6} + \omega_{\Im \Gamma \mathbf{y}}^2 x_{e5} + 2\varsigma_{\Im \Gamma \mathbf{y}} \omega_{\Im \Gamma \mathbf{y}} x_{e6}). \end{split}$$

Коэффициенты регуляторов при $x_3 > 0$ и $x_3 < 0$ определяются так же, как в случае ЭГСП с симметричным гидроцилиндром. После вычисления коэффициентов регуляторов для каждого случая проведено компьютерное моделирование ЭГСП при выдвижении и втягивании штока ГЦ с различными нагрузками на его выходное звено. Результаты моделирования приведены на рис. 8, δ .

Выводы. 1. Оптимальной с точки зрения робастности ЭГСП в отношении нагрузки на выходное звено является структурная схема линейной модели, в которой предусмотрены обратные связи по трем переменным состояния: перемещению, скорости и ускорению штока гидроцилиндра.

2. Синтез структуры и параметров ЭГСП с учетом нелинейности характеристик целесообразно проводить, используя в качестве эталонной предварительно оптимизированную линейную модель ЭГСП.

3. Выполненные исследования показывают, что при решении задачи синтеза ЭГСП как нелинейной системы управления целесообразно применять второй метод Ляпунова.

СПИСОК ЛИТЕРАТУРЫ

- 1. Проблемы прикладной механики, динамики и прочности машин // Сб. статей / Под ред. В.А. Светлицкого, О.С. Нарайкина. М.: Изд-во МГТУ им. Н.Э. Баумана, 2005. 320 с.
- 2. Ходько С. Т. Проектирование систем управления с нестабильными параметрами. Л.: Машиностроение. ЛО, 1987. 232 с.
- Дорф Р., Бишоп Р. Современные системы управления / Пер. с англ. Б.И. Копылова. – М.: Лаборатория Базовых Знаний, 2004. – 832 с.
- 4. Пупков К. А и. др. Методы робастного, нейро-нечеткого и адаптивного управления: Учебник для вузов. 2-е изд. / Под ред. Н.Д. Егупова; М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. 744 с.
- 5. Попов Д. Н. Динамика и регулирование гидро- и пневмосистем: Учебник для вузов. 2-е изд. М.: Машиностроение, 1987. 464 с.
- 6. Филлипс Ч., Харбор Р. Системы управления с обратной связью. М.: Лаборатория Базовых Знаний, 2001. 616.
- 7. L u H. and L i n W. Robust controller with disturbance rejection for hydraulic servo systems. IEEE Trans. Indust.Elec., vol. 40. P. 157–162, Feb. 1993.

- 8. W a y n e R. A n d e r s o n . Controlling electrohydraulic systems. P. cm. (fluid power and control; 7). Marcel Dekker, INC. New York. 1988.
- 9. C h e r n T. and W u Y. An optimal variable structure control with integral compensation for electrohydraulic position servo control systems. IEEE Trans. Indus. Elec., vol. 39. P. 460–463, Oct. 1992.

Статья поступила в редакцию 30.10.2006

Дмитрий Николаевич Попов родился в 1927 г., окончил Московский строительный институт в 1949 г. Д-р техн.наук, профессор кафедры "Гидромеханика, гидромашины и гидропневмоавтоматика" МГТУ им. Н.Э. Баумана. Заслуженный деятель науки России. Автор около 180 научных работ, в том числе трех монографий и четырех учебников в области гидромеханики и управления гидропневмосистемами.

D.N. Popov (b. 1927) graduated from the Moscow Civil Engineering Institute. D. Sc. (Eng.), professor of "Hydromechanics, Hydraulic Machines and Hydro-pneumatic-

automation" department of the Bauman Moscow State Technical University. Honored Worker of Science of Russia, Author of 180 publications including 3 monographs and 4 textbooks in the field of hydromechanics and control of hydraulic-pneumatic systems.

Таха Али Ахмад родился в 1967 г., окончил бакалавриат по механической инженерии в Дамасском университете (Сирийская Арабская Республика) в 1990 г., получил степень магистра по механической и электронной инженерии на факультете механических наук Университета наук и технологии им. Хуаз Хонг (Китайская Народная Республика) в 2000 г. Аспирант МГТУ им. Н.Э. Баумана кафедры гидромеханики, гидромашин и гидропневмоавтоматики. Автор двух научных работ в области гидромеханики.

Taha A.A. (b. 1967) graduated from the Damascus University, (the Syrian Arabian Republic) in 1990. Degree of master in mechanical-electronic engineering (Hua Zhong University of Sciences and Technology — the Chinese National Republic in 2000). Post-graduate of "Hydromechanics, Hydraulic Machines and Hydro-pneumatic-automation" department of the Bauman Moscow State Technical University. Author of two publications in the field of hydromechanics.