В. А. Котляревский, А. А. Александров, В. И. Ларионов

АНАЛИЗ ПРОЧНОСТИ ЗАГЛУБЛЕННЫХ В ГРУНТ МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОВ В СЛОЖНЫХ УСЛОВИЯХ НАГРУЖЕНИЯ

Рассмотрены нагрузки, действующие на линейную часть магистральных нефтепроводов, и внутренние силы в материале трубы при сложных условиях нагружения.

E-mail: lar@esrc.ru; ualabu@inbox.ru

Ключевые слова: магистральный нефтепровод, грунт, нагрузки, внутренние силы, температурный перепад.

Заглубленные в грунт линейные части (ЛЧ) магистральных нефтепроводов (МН) на участках трасс с вертикальной кривизной рельефа статически нагружены массой засыпки, а также изгибающими моментами от искривлений рельефа. Кроме того, при эксплуатации оболочка МН растягивается под действием гидростатического давления транспортируемого продукта. Температура заглубленных труб отличается от начальной температуры при прокладке в грунт, такой температурный перепад вызывает осевое нагружение труб. На трубы с продуктом также может действовать вертикальное выталкивание от водоизмещения и внешнее гидростатическое давление (для случая обводненной среды). В сейсмически активных регионах на МН действуют волновые сейсмические нагрузки.

В общем случае условия, вызывающие статическое нагружение и напряженно-деформированное состояние (НДС) МН, включают в себя: литостатические давления; выталкивающие силы водоизмещения и внешнее градиентное гидростатическое давление; кривизну МН в условиях местного рельефа; температурный перепад; внутреннее гидростатическое давление транспортируемого продукта.

Рассмотрим методы и некоторые результаты определения НДС и ресурса прочности трубопроводов при возможных сочетаниях компонент тензора напряжений в реальных комплексных условиях статического и сейсмического нагружений.

Нагрузки на МН и внутренние силы. Действие погонной силы G_1 от массы грунта над трубой определяется по формуле

$$G_1 = 2\rho g h D,$$

а выталкивающей силы водоизмещения G_2 из выражения

$$G_2 = \pi \rho_{\scriptscriptstyle \rm B} g R^2,$$

где D — внешний диаметр МН; ρ и $\rho_{\rm B}$ — плотности грунта и воды; h — толщина грунтовой засыпки; g — ускорение свободного падения.

При совместном действии массы засыпанного грунта и возможного водоизмещения оболочка сжимается по вертикали под действием силы $G = G_1 + G_2$ (боковым давлением пренебрегаем):

$$G = Rg(2\rho h + \pi \rho_{\scriptscriptstyle \rm B} R). \tag{1}$$

В случае обводненной среды кроме выталкивающей силы на трубопровод будет действовать гидростатическое давление, зависящее от изменяющейся глубины y как $p_y = \rho_{\rm B}gy$ с градиентом 10 кПа/м (при плотности воды $\rho_{\rm B} = 1000$ кг/м³). Среднее внешнее гидростатическое давление на реальный заглубленный МН крайне слабо разгружает внутреннее гидростатическое давление транспортируемого продукта, и при расчете ресурса прочности внешнее давление воды p_y далее во внимание не принимается.

Возможная геологическая кривизна при прокладке МН в условиях местного рельефа вызывает статический изгиб трубопровода в вертикальной плоскости, и значение изгибающего момента M_{kr} в зависимости от кривизны K_R и изгибной жесткости EJ трубы можно определить как

$$M_{kr} = K_R E J, \tag{2}$$

где $J=\frac{1}{64}\pi(D^4-d^4)-$ момент инерции поперечного сечения оболочки трубы с внутренним диаметром $d;\,E-$ модуль упругости материала трубы.

Текущая температура трубопровода T_2 во время эксплуатации обычно отличается от начальной температуры T_1 при строительстве, и под действием температурного перепада $\Delta T = T_2 - T_1$ в оболочке возникают продольные силы $N_{\rm T}$, зависящие от продольной жесткости EF сечения трубы и коэффициента температурного расширения материала α (для стали $\alpha = 1, 2 \cdot 10^{-5}$ град⁻¹):

$$N_{\rm T} = -\alpha \Delta T \cdot EF. \tag{3}$$

Сила $N_{\rm T}$ вызывает осевое сжатие МН при $\Delta T>0$ и растяжение при $\Delta T<0.$

Гидростатическое давление P_g транспортируемого продукта вызывает кольцевые растягивающие силы N_p в стенке трубы

$$N_{\rm p} = 0.5 dP_g,\tag{4}$$

а также осевые силы $N_{\mu} = \mu N_{\rm p}$, зависящие от коэффициента Пуассона μ , и $N_{gos} = (1 - K_z) F_0 P_g$ с коэффициентом защемления K_z трубопровода в грунте при давлении P_g на торцевую площадь трубы $F_0 = \frac{1}{4}\pi d^2$:

$$N_{\rm pz} = N_{\mu} + N_{gos}.\tag{5}$$

Поперечная, сжимающая трубу сила G (1) вызывает кольцевой изгиб и сжатие стенки оболочки с переменными по окружности

Рис. 1. Аппроксимирующая распределенная нагрузка на трубу в плоскости XY, нормальной оси Z трубопровода

внутренними силами (нормальной силой Nи изгибающим моментом M), зависящими от угла φ [1] (φ — угловая координата с отсчетом от диаметра, ортогонального направлению действия нагрузки (рис. 1)).

Распределение давлений, действующих на оболочку радиусом R = D/2 при учете неравномерности взаимодействия нагрузки в грунте с трубой в плоскости XY, нормальной оси трубы, принято в форме треугольника, симметричного относительно оси Y (вдоль силы $N_y = G$), с максимумом давления $p = N_y/R$. Предположим, что внешнее давление p вызывает только формоизменение оболочки, тогда гидростатическое давление в жидком продукте, заполняющем оболочку на все сечение, не снижает изгибающих моментов M.

При треугольной аппроксимации нагрузки с максимальным давлением p нормальная сила N в стенке оболочки определяется как

$$N = \begin{cases} N_0 \cos \varphi - \frac{1}{2} pR \sin \varphi; \ N_0 = -0.02653 pR \left(0 \le \varphi \le \frac{1}{2} \pi \right); \\ N_0 \cos \varphi - \frac{1}{2} pR \sin \varphi + \frac{1}{2} pR (1 - \sin \varphi)^2 \sin \varphi \left(\frac{1}{2} \pi \le \varphi \le \pi \right); \end{cases}$$
(6)

изгибающий момент — по выражениям

$$M = \begin{cases} 0,305pR^2 - N_0 R(1 - \cos\varphi) - \frac{1}{2}pR^2 \sin\varphi, & \left(0 \le \varphi \le \frac{1}{2}\pi\right); \\ 0,305pR^2 - N_0 R(1 - \cos\varphi) - & \\ -\frac{1}{2}pR^2 \sin\varphi - \frac{1}{6}pR^2(1 - \sin\varphi)^3 & \left(\frac{1}{2}\pi \le \varphi \le \pi\right), \end{cases}$$
(7)

а поперечная сила определяется по уравнениям

$$Q = \begin{cases} -N_0 \sin \varphi - \frac{1}{2} pR \cos \varphi & \left(0 \le \varphi \le \frac{1}{2}\pi\right); \\ -N_0 \sin \varphi - \frac{1}{2} pR \cos \varphi + \\ + \frac{1}{2} pR (1 - \sin)^2 \cos \varphi & \left(\frac{1}{2}\pi \le \varphi \le \pi\right). \end{cases}$$
(8)

Экстремальные значения усилий в опасных точках $A~(\varphi=0~{\rm u}~+\pi)$ и $C~(\varphi=\pm\pi/2)^1$ можно найти как

$$N_A = -0.02653pR, \quad N_C = -0.5pR \tag{9}$$

¹При аппроксимации распределения нагрузки по закону синуса изгибающий момент в опасных точках A и C составляет $M_A = 0.219 P_m R^2$ и $M_C = -0.233 P_m R^2$. нормальные силы;

$$M_A = 0.305 p R^2, \quad M_C = -0.16847 p R^2 \tag{10}$$

- изгибающие моменты.

Эквивалентные напряжения в МН и НДС. Далее приведены расчетные соотношения для эквивалентного напряжения в МН и НДС от действия рассмотренной системы статических сил. Для комплексной оценки ресурса прочности МН к системе нагрузок добавлено осевое сейсмическое воздействие [2]. Напряжение, определяющее резерв прочности, находят, выбирая экстремальное значение из числа компонент тензора напряжений и эквивалентного напряжения, рассчитанного по энергетической теории прочности для всех возможных сочетаний главных напряжений в оболочке МН с учетом знакопеременности изгибных напряжений.

Компоненты тензора напряжений. В условиях статики оболочка напряжена вдоль оси Z, а в плоскости XY она находится в симметричном деформированном состоянии и напряжения рассматриваются в двух опасных сечениях стенки трубы — в точках A и C (см. рис. 1, 2).

От обжимающего давления с максимумом p = G/R при возникающих сжимающих силах $N_{A/C}$ (9) и моментах $M_{A/C}$ (10) в опасных точках кольцевого сечения оболочки действуют нормальные напряжения

$$\sigma_{NA/NC} = N_{A/C}/F_{\delta}$$

и фибровые изгибные напряжения

$$\sigma_{MA/MC} = \pm M_{A/C}/W_{\delta},$$

где $F_{\delta} = \delta$ и $W_{\delta} = \frac{1}{6}\delta^2$ — площадь поперечного сечения и момент сопротивления стенки оболочки на единицу ее длины.

При наличии ненулевой начальной кривизны K_R (2) возникают фибровые нормальные изгибные напряжения в вертикальной плоскости, которые в точках *C* нормального сечения определяются по формуле

$$\sigma_{C,kr} = \pm M_{kr}R/J = \pm K_R ER,$$

где J — момент инерции поперечного сечения оболочки радиуса R

Рис. 2. Оболочка единичной длины (L = 1 м) и сечение стенки при кольцевом изгибе и сжатии (показаны напряжения при изгибе)

с модулем упругости E (в точках A на нейтральной оси напряжения отсутствуют).

При температурном перепаде Δ (3), не равном нулю, осевые равномерные по сечению (и в точках A и C) напряжения определяются как

$$\sigma_{\Delta T} = N_T / F = \alpha \Delta T E.$$

Кольцевые растягивающие равномерные по сечению (и в точках A и C) напряжения от гидростатического давления продукта P_g (4) можно найти по формуле

$$\sigma_g = N_{\rm p}/F_{\delta} = P_g R/\delta,$$

а осевые напряжения от действия сил $N_{\rm pz}$ (5) определяются как $\sigma_{\mu}=N_{\mu}/F$ и $\sigma_{gos}=N_{gos}/F.$

Соотношения для кольцевого изменения формы МН. Абсолютные значения диаметральных деформаций расширения (δ_x) и укорочения (δ_y) оболочки составляют

$$\delta_x = 0.1228 p_m R^4 / (EJ_\delta), \quad \delta_y = -0.1220 p_m R^4 / (EJ_\delta),$$

где $J_{\delta} = \frac{1}{12} \delta^3$ — момент инерции стенки оболочки.

Определение системы эквивалентных напряжений при всех сочетаниях главных напряжений с учетом нормативной сейсмической нагрузки. К системе статических напряжений присоединим сейсмические напряжения [2]:

$$\sigma_{seism} = \pm 0.04 m_0 k_0 k_{\mathrm{II}} a_{\mathrm{c}} E T_0 / V_1,$$

где m_0 — коэффициент защемления трубопровода в грунте; k_0 — коэффициент ответственности трубопровода; $k_{\rm n}$ — коэффициент повторяемости землетрясений; $a_{\rm c}$ — сейсмическое ускорение; E — модуль упругости материала трубы; T_0 — преобладающий период сейсмических колебаний; V_1 — скорость продольной сейсмической волны.

Суммируя напряжения на ортогональных площадках опасных сечений стенки трубы, запишем формулы для главных напряжений:

 $\sigma_1 = \sigma_{\Delta T} + \sigma_{qos} + \sigma_{\mu} \pm \sigma_{seism}, \quad \sigma_2 = \sigma_{NA} \pm \sigma_{MA} + \sigma_q$

— в опасной точке А;

 $\sigma_1 = \pm \sigma_{C,kr} + \sigma_{\Delta T} + \sigma_{gos} + \sigma_{\mu} \pm \sigma_{seism}, \quad \sigma_2 = \sigma_{NC} \pm \sigma_{MC} + \sigma_g$ — в опасной точке C.

При рассмотрении системы внутренних сил и напряжений возникает необходимость выполнить анализ плоского напряженного состояния с интенсивностью напряжений, представляющей собой эквивалентное напряжение (по энергетической теории прочности)

$$\sigma_3=\sqrt{\sigma_1^2+\sigma_2^2-\sigma_1\sigma_2}.$$

Сравнивая значения модулей компонент σ_i тензора напряжений и эквивалентных напряжений σ_3 для всех возможных сочетаний σ_i , находим экстремум напряжений σ_m и сопоставляем с предельно допустимым напряжением [σ_d], проверяя тем самым условие обеспеченной прочности

$$\sigma_m \leq [\sigma_d].$$

При удовлетворении неравенства определяется ресурс прочности

$$R_{\rm np} = 1 - \sigma_m / [\sigma_d].$$

Варианты (общим числом 18) сочетаний σ_i нахождения σ_3 отличаются наличием и знаками кривизн K_R и наличием сейсмического воздействия a_c (табл. 1).

Алгоритм определения экстремума напряжений и ресурса прочности запрограммирован для ПК (программа STRING).

В результате вариантных расчетов выдаются значения литостатической нагрузки G с учетом водоизмещения (для водонасыщенного грунта), давления P_m обжатия трубы, изгибающего момента M_{kr} от кривизны рельефа, а также значения следующих компонент тензора напряжений: σ_{MA} или σ_{MC} — фибровых кольцевых изгибных напряжений стенки; σ_{NA} или σ_{NC} — равномерных кольцевых напряжений сжатия стенки; σ_g — кольцевого растяжения от давления продукта; $\sigma_{\Delta T}$ — осевого сжатия от температурного перепада; σ_{μ} — осевого растяжения Пуассона; σ_{gos} — осевого растяжения от торцевого давления продукта; от кривизны рельефа; σ_{seism} — осевого напряжения от сейсмического воздействия.

При различных наборах входных данных (в условиях статического и сейсмического нагружений, при наличии или отсутствии температурных перепадов, кривизны рельефа и водонасыщенности грунта) выдаются максимальные по модулю значения интенсивности напряжений для всех условий нагружения и сочетаний знакопеременных напряжений, а также глобальный экстремум интенсивности — эквивалентное напряжение σ_3 . В результате сравнения с максимальной по модулю компонентой тензора выдаются экстремальные значения напряжений σ_m и ресурса прочности.

Вариантные прочностные расчеты нефтепроводов. Исходные данные. Проведены вариантные прочностные расчеты МН по программе STRING со следующими исходными данными [2, 3]: диаметр труб D = 1220 мм; толщина стенки $\delta = 13$ и 20 мм; давление продукта $P_g = 8,8$ МПа; кривизна рельефа $K_R = 0,002 \text{ м}^{-1}$; температурный перепад $\Delta T = -20$ и +20 °C; плотность воды $\rho_{\rm B} = 1000$ кг/м³; сейсмичность $A_{\rm c} = 8$ баллов ($a_{\rm c} = 200$ см/с²).

формир	ован	ие со	четан	ний к	DHIMOS	нент	$\sigma_i \mathbf{T}$	ензор	a Ha	жвdп	ений д	по вц	гэдэд	ения	интег	юнвн	ости напр	яжений
Компо- ненты									Bap	ианты	ганор 1	ганий						
тензора напря-	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18
жений			r иdп	$K_R \neq$	$\neq 0, a_{\rm c}$	$_{\circ} \neq 0$			иdп	$K_R =$	= 0, <i>a</i> _c	$i \neq 0$	иdп	$K_R \neq$	$0, a_{\rm c}$	0 =	при K_R	$= a_{c} = 0$
σ_{MC}	+	+	Ι	Ι	+	+	I	Ι	·	Hepac	онтэн	e	+	+	Ι	Ι	Hepac	нетное
σ_{MA}			H	Iepac	нетно	e			+	I	+	I	I	Hepacr	етноє	0	+	Ι
$\sigma_{C,kr}$	+	Ι	+	Ι	+	Ι	+	I	0	0	0	0	+	I	+	I	0	0
σ_{seism}	Ι	Ι	Ι	I	+	+	+	+	I	I	+	+	0	0	0	0	0	0

Таблица 1

Металл труб: модуль упругости $2,06 \cdot 10^5$ МПа, коэффициент Пуассона 0,3, плотность 7850 кг/м³, коэффициент температурного расширения $1,2 \cdot 10^{-5}$ град⁻¹; класс прочности К60, предел текучести 460 МПа, предел прочности 590 МПа.

Плотность нефти 800 кг/м³.

Грунт: толщина засыпки 0,915 м, плотность 1500 кг/м³, модуль упругости $2 \cdot 10^4$ МПа, угол внутреннего трения 22°, удельное сцепление 0,028 МПа; при сейсмической интенсивности 8 баллов для грунта $V_1 = 350$ м/с; $m_0 = 0,45$; $k_0 = 1,5$; $k_{\pi} = 1$; $T_0 = 1,7$ с.

Анализ прочности выполнен при последовательном наращивании нагрузок до полного комплекса изменения реальных условий.

Вначале (*вариант 1*) для труб с толщиной стенки 13 мм был проведен расчет для статических условий и получен весьма низкий ресурс прочности $R_{\rm np} = 1,71$ %. В связи с этим далее толщину стенки увеличили до 20 мм и в статике (*вариант 2*) значение ресурса прочности составило $R_{\rm np} = 40,84$ %.

При расчете по *варианту 3* (и следующим вариантам) учитывали сейсмическую интенсивность $A_{\rm c} = 8$ баллов было получено $R_{\rm np} = 39,6$ %.

Расчет прочности по *варианту* 4 (и далее) при учете кривизны рельефа $K_{\rm p} = 0,002 \,{\rm m}^{-1}$ дал следующее значение ресурса прочности $R_{\rm np} = 12,4$ %.

Для варианта 5 (и далее) был добавлен отрицательный температурный перепад -20 °C, тогда $R_{\rm np} = 3,78$ %; в варианте 6 (и далее) учтено действие водоизмещения и $R_{\rm np} = 3,38$ %; при расчета по варианту 7 знак температурного перепада был изменен на положительный, полученное значение ресурса прочности составило $R_{\rm np} = 3,02$ %.

Результаты расчета. Итак, по результатам расчета по 7-му варианту можно заключить, что трубопровод диаметром D = 1220 мм и толщиной стенки $\delta = 20$ мм под внутренним давлением продукта 8,8 МПа на местности с геологической кривизной 0,002 м⁻¹ с сухим или влагонасыщенным грунтом при температурных перепадах от – 20 до + 20 °C выдерживает землетрясение интенсивностью 8 баллов с резервом прочности 3 %.

В табл. 2 приведены результаты расчета по всем вариантам (для напряжений приведены значения их модулей, кроме напряжений $\sigma_{\Delta T}$). В табл. 3 даны результаты определения интенсивности напряжений всех сочетаний главных напряжений для наиболее показательных четырех последних вариантов. По ним устанавливается значение экстремума $\sigma_3 = \sigma_m$, т.е. расчетного эквивалентного напряжения, поскольку величина σ_3 во всех вариантах превосходит значения всех компонент тензоров напряжений. Окно программы расчета приведено на рис. 3.

Таблица 2

		-					
			№ вариа	анта		_	
Параметры	1	2	3	4	5	6	7
	Сочета	ние 17–18	Сочетание 9-12		Сочета	ние 1–8	-
δ , мм	13	20	20	20	20	20	20
P_g , МПа	8,8	8,8	8,8	8,8	8,8	8,8	8,8
K_R , m ⁻¹	-	-	-	0,002	0,002	0,002	0,002
ΔT , град.	-	-	-	-	-20	-20	+20
$A_{\rm c}$, балл	-	-	8	8	8	8	8
$ ho_{\rm b},{\rm Kf/m^3}$	-	-	-	-	-	1000	1000
<i>G</i> , кН	16,40	16,40	16,40	16,40	16,40	27,89	27,89
P_m , МПа	26,93	26,93	26,93	26,93	26,93	45,73	45,73
M_{kr} , МН·м	-	-	_	5,59	5,59	5,59	5,59
$\sigma_{MA/MC}$, МПа	108,50	45,84	45,84	25,32	25,32	43,00	43,00
$\sigma_{NA/NC}$, МПа	0,034	0,022	0,022	0,41	0,41	0,697	0,697
σ_g , МПа	412,92	268,4	268,4	268,4	268,4	268,4	268,4
$\sigma_{\Delta T}$, МПа	-	-	-	-	49,44	49,44	49,44
σ_{μ} , МПа	123,88	80,52	80,52	80,52	80,52	80,52	80,52
σ_{gos} , МПа	113,55	73,81	73,81	73,81	73,81	73,81	73,81
$\sigma_{C,kr}$, МПа	-	-	-	251,32	251,32	251,32	251,32
$\sigma_{seism},$ МПа	-	-	54,03	54,03	54,03	54,03	54,03
$P_{\mathfrak{I}}$, МПа	452,14	272,14	278,00	403,1	442,61	444,47	446,10
$R_{\rm np}$, %	1,71	40,84	39,60	12,40	3,78	3,38	3,02

Результаты прочностных расчетов МН при изменении условий эксплуатации с наращиванием нагружения

Таблица 3

Интенсивности напряжений (локальные эквивалентные напряжения), МПа, при всех сочетаниях главных напряжений

No populatro				Соче	гание			
л≌ варианта	1	2	3	4	5	6	7	8
4	396,3	266,8	403,1	317,0	311,8	344,0	326,4	391,3
5	441,1	239,5	442,6	290,1	349,9	306,4	359,5	355,2
6	441,9	221,5	444,5	307,5	348,2	289,2	364,4	372,0
7	355,8	282,5	370,6	365,8	271,9	368,4	306,5	446,1

Примечание. Выделены экстремальные значения — расчетные эквивалентные напряжения

СТАТИЧЕСКИЕ ПАРАМЕТРЫ ОЛЩИНА ЗАСЫПКИ 0.915 м ОЛЩИНА ЗАСЫПКИ 0.915 м ОЛЩИНА ЗАСЫПКИ 0.915 м Диаметр трубы, мен 1220 Диаметр трубы, мен 1220 Докаметр трубы, мен 120 Совор склатик Совут Ма ОПШЕНОГО РАСТЯКЕНИЯ ОТ ДАЛЕНИЯ ПРОДУКТА, 284 МПа 10002 СКОРСК И СТИВИЗАНИЯ ПРОДУКТА, 284 МПа 1002 ССВОР РАСТЯКЕНИЯ ОТ ДАЛЕНИЯ ПРОДУКТА, 284 МПа 1000 ССВОР РАСТЯКЕНИЯ ОТ ПИЛИНИЯ ПИДРОДАВЛЕНИЯ 8052ML, 1260 ССВОР РАСТЯКЕНИЯ ОТ ДАЛЕНИЯ ПИДРОДАВЛЕНИЯ 8052ML, 1260 ССВОР РАСТЯКЕНИЯ ОТ ВИЛИНИЯ ПИДРОДАВЛЕНИЯ 8052ML, 1260 ССВОР РАСТЯКЕНИЯ ОТ ВИЛИНИЯ ПИДРОДАВЛЕНИЯ 8052ML, 1260 ССВОР РАСТЯКЕНИЯ ОТ ЧАЛИИ И 411921316770382 МПа АЛРЭЖЕНИЕ ПРИ СОЦЕТАНИИ 1 441921316770382 МПа АЛРЭЖЕНИЕ ПРИ СОЦЕТАНИИ 2 430 5122376532305 МПа АЛРЭЖЕНИЕ ПРИ СОЦЕТАНИИ 3 443 571623755822 МПа АЛРЭЖЕНИЕ ПРИ СОЦЕТАНИИ 3 4381871139300 МПа АЛРЭЖЕНИЕ ПРИ СОЦЕТАНИИ 3 4381871139300 МПа АЛРЭЖЕНИЕ ПРИ СОЦЕТАНИИ 3 43051213307 МПа АЛРЭЖЕНИЕ ПРИ СОЦЕТАНИИ 3 372042150715 МПа АЛРЭЖЕНИЕ ПРИ СОЦЕТАНИИ 3 372042150715 МПа АЛРЭЖЕНИЕ ПРИ СОЦЕТАНИИ 7 34381871139300 МПа АЛРЭЖЕНИЕ ПРИ СОЦЕТАНИИ 3 372042150715 МПа АЛРЭЖЕНИЕ ПИИ СОЦЕЛЬИИ АЛРЭЖ	ПРОТОКОЛ РЕЗУЛЬТАТОВ РАСЧЕТА ПРОЧНОСТИ И РЕСУРСА МТ	ДАННЫЕ НЕФ	ТЕПРОВОДА	СЕЙСМИКА И	1 ГЕОЛОГИ
ОДТРЭЗКА ЛИТОСТАТИЧЕСКАЯ И 00.0014/КЩЕНИЯ 27.084 КН Толщина стенки 20 Дониматиска, с 1.7 ВАВЛЕНИЕ ОБКАТИЛЯ ГРЭБЫ КЗ728 (Ла Полтиность 7850 Скорость волны, с 350 ИЗЛИБАЮЩИЙ МОМЕНТОТ КРИВИЗНЫ РЕЛЬЕФА 5.593 М.Н.м. Полтиность 7850 Скорость волны, 1.7 ИЗЛИБАЮЩИЙ МОМЕНТОТ КРИВИЗНЫ РЕЛЬЕФА 5.593 М.Н.м. Полтиность 7850 Скорость волны, 1.7 ОЛЬЦЕВОГО РАСТЯКЕНИЯ ОТ ДАВЛЕНИЯ ПРОДУКТА 288.4 МПа Коаффициент 0.3 Пеленизован, 1.6 0.002 ОСЕВОЕ СКАТИКЕ ОТВИЛИНИЯ ГИДРОДАВЛЕНИЯ НА ТОРЕЦ. 73.81 МПа Коаффициент 0.3 Температурной 0.45 ОСЕВОЕ НАЛГЯКЕНИЕ ОТ ВЛИКИНИ ЛИДРОДАВЛЕНИЯ НА ТОРЕЦ. 73.81 МПа Прадел 1.2.5 Коаффициент 0.45 ОСЕВОЕ НАЛГЯКЕНИЕ СЕХОМИЧЕСКОЕ ПО НОРМАИ МИДОДЛЬ 54.0 МПа Прадел Прадел 1.2.5 Коаффициент 0.45 ОДРЭЖЕНИЕ ПРИ СОЧЕТАНИИ 1. 411.921167/0382 МПа Прадел Полность воды, 1000 0.45 АЛРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 1. 441.921167/0382 МПа Прадел Прадел 1.000 Коаффициент 0.45 АЛРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 3.43167/03830 МПа <td></td> <td>Диаметр трубы, мм</td> <td>1220</td> <td>Балльность</td> <td>8</td>		Диаметр трубы, мм	1220	Балльность	8
4371/6 АЮЩИЙ ИОМЕНТ ОТ КРИВИЗНЫ РЕЛЬЕФА 5.593 МН.м. Полность станик//м3 7850 Скорость волны, м/с 350 НАЛРЯЖЕНИЯ Полность станик//м3 2065 м/с 350 УМРОВОВ СКОЛЬЦЕВОЕ ИЗЛИБНОЕ (МОДУЛЬ) 42.999 МПа Мадия упроготи станик//м3 20665 0.002 ОЛЬЦЕВОГ СРАСТЯКЕНИЯ ОТ ДАВЛЕНИЯ ПРОДУКТА. 268.4 МПа Козфарицент 0.3 Температурного 0.002 ОДВОВ КОЛТКЕНИК ОТ БИЛИНИЯ ПИДРОДАЮТЕНИЯ НА ТОРЕЦ. 73.81 МПа Козфарицент 0.3 Температурного 0.20 ОДВОВ КОЛТКЕНИЯ ОТ БИЛИНИЯ ПИДРОДАЮТЕНИЯ НА ТОРЕЦ. 73.81 МПа Геофорицент 0.3 Температурного 0.20 ОСЕВОЕ КАЛТКЕНИЯ СОГО БИЛИНИЯ ПИДРОДАЮТЕНИЯ НА ТОРЕЦ. 73.81 МПа Геофорицент 0.3 Температурного ОСЕВОЕ НАЛРЯЖЕНИЕ СРИССИЕТАНИИ 2 221:5345735325 MПа Полность Полность 0.45 АЛРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 2 221:5345735326 MПа Правел Полность 1000 к// 40 АЛРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 2 30:5125705325 MПа Правел Правел 1000 к// 40 1000 к// 40 1000 к// 40 1000 к// 40 1000	ОЛЩУНИ ЗАСЫНИИ 0.313 М НАГРУЗКА ЛИТОСТАТИЧЕСКАЯ И ВОДОИЗМЕЩЕНИЯ 27.894 КН ДАВЛЕНИЕ ОБЖАТИЯ ТРУБЫ 45.728 кПа	Толщина стенки	20	- Доминантный период. с	1.7
Приводский оприводский соприводский оприводски оприводский оприводский оприводский оприводский опривод	ИЗГИБАЮЩИЙ МОМЕНТ ОТ КРИВИЗНЫ РЕЛЬЕФА 5.593 МН.М	Плотность сталикс/м3	7850	Скорость волны,	350
CONSUBBIO PACTRXENUE OT LABORENURS ПРОДИКТА. 288.4 MПа Козфанциент 0.3 CEBO EXATURE OT TEMICERATIVENT OT DEPENDANCE AS 43.4 MПа ВСЗИПА 1.25 DEGBO EXATURE OT TEMICERATIVENT OT LABORAL 43.4 MПа 0.24 1.25 DEGBO EXATURE OT TEMICERATIVENT OT LABORAL 43.4 MПа 0.24 1.25 DEGBO EXATURENTIE OT TEMICERATIVENT OT LABORAL 43.4 MПа 0.45 3.37 CEBO EACTRXENUE OT BINIPHUR TO LEDENAMA MODULUS 54.0 MПa 1.25 1.25 ADPRXEENUE TPM COUCTEANNUE CSCO EN ONE-NAMA MODULUS 54.0 MПa 1.26 590 1.000 ADPRXEENUE TPM COUCTEANNUE 44.4 71.535373306 MПa 1.26.5 1.26.5 1.000 1.000 ADPRXEENUE TPM COUCTEANNUE 44.4 71.536373753302 MTa 1.000 1.000 1.000 1.000 ADPRXEENUE TPM COUCTEANNUE 3.44.577.6582025 MTa 1.000 1.000 1.000 1.000 ADPRXEENUE TPM COUCTEANNUE 3.281637953025 MTa 1.000 </td <td>ПАЛЕРИА РИБРОВОЕ КОЛЬЦЕВОЕ ИЗГИБНОЕ (МОДУЛЬ) 42.999 МПа РАВНОМЕРНОЕ КОЛЬЦЕВОЕ СЖАТИЕ 0.697 МПа</td> <td>Модуль упругости стали. МПа</td> <td>2.06e5</td> <td>Геологическая</td> <td>0.002</td>	ПАЛЕРИА РИБРОВОЕ КОЛЬЦЕВОЕ ИЗГИБНОЕ (МОДУЛЬ) 42.999 МПа РАВНОМЕРНОЕ КОЛЬЦЕВОЕ СЖАТИЕ 0.697 МПа	Модуль упругости стали. МПа	2.06e5	Геологическая	0.002
ОСЕВОЕ РАСТЯЖЕНИЕ ОТ ВЛИЯНИЯ ГИДРО ДАВЛЕНИЯ НА ТОРЕЩ. 73.81 МПа Коз фициент 1.25.5 перепал. град. АЛРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 1 441.921316770382 МПа Прадел 1.25.5 Полность воды. АЛРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 1 441.921316770382 МПа Прадел 1.25.5 Полность воды. АЛРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 1 441.921316770382 МПа Прадел 1.25.5 Полность воды. 000 АЛРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 1 441.921316770382 МПа Прадел 1.25.5 Полность воды. 1000 АЛРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 1 441.921316770382 МПа Прадел 1.25.5 Полность воды. 1000 АЛРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 3 444.714262123 МПа Прадел 1.25.5 1000 1000 АЛРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 5 281.8705632025 МПа Па Прочности, МПа 1000 1000 АЛРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 5 281.8705632025 МПа Па Полность 1000 1000 АЛРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 5 281.87063203087 МПа Полность 1000 1000 1000 1000 1000 1000 1000 1000 1000 <	(ОЛЬЦЕВОГО РАСТЯЖЕНИЯ ОТ ДАВЛЕНИЯ ПРОДУКТА - 268.4 МПа) ОСЕВОЕ СЖАТИЕ ОТ ТЕМПЕРАТУРНОГО ПЕРЕПАДА 49.44 МПа ОГЕРАЛЕ РАСТЯЖЕНИЕ (ПУАСТОНИОТ ВЛИЯНИЯ ГИ ПРО ПАВЛЕНИЯ - 80.52 МП)	Ксэффициент Пчассона	0.3	Температурный	-20
DLEBDE HATIFYXEHRE CEVIDMINECTOR ID HIDPMAN (MDLIght) 54.0 MTa pcacuapeess, 1/rpal. Courtering Courtering Courtering 0.43 ATPRXEHRE TPV COVETAHUN 1 441 32116770382 MTa Tpeacen Trekveetrick MTa Monorents social. Non-occession.	СЕВОЕ РАСТЯЖЕНИЕ ОТ ВЛИЯНИЯ ГИДРОДАВЛЕНИЯ НА ТОРЕЦ 73.81 МПа 13ГИБНЫЕ ОТ КРИВИЗНЫ РЕЛЬЕФА (МОДУЛЬ) 251.32 МПа	Коэффициент температурного	1.2E-5	. перепад, град.	0.45
АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 1 441.921316770382 МПа Праваел текцчести, МПа 460 Плотность воды, кг/м3 (и призмак) АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 2 221.53437963306 МПа Праваел прочности, МПа 590 590 АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 3 444.714267123 МПа Праваел прочности, МПа 590 6660, нености АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 3 444.714267123 МПа Праваел прочности, МПа 590 6660, нености АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 3 444.714267123 МПа Проваел прочности, МПа 590 7924 АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 3 444.71426714300 МПа ПРОДУКТ ГРУНТ 1500 АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 8 272 (24)53761075 МПа Плотность нефти, Кг/м3 1500 АЛРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 8 372 (24)53761075 МПа Плотность нефти, Кг/м3 1500 - зубяивалентное напряжение при сочетании 8 372 (24)53761075 Па 1500 44441 - зубяивалентное напряжение при сочетании 8 372 (24)5761075 Па 1600 4690 - зубяивалентное напряжение при маряяхение при маряяхение при мая 3,376 % Гидростяниеское давление нефти, МПа 88 Угол ен трения 22	•••ОСЕВОЕ НАПРЯЖЕНИЕ СЕЙСМИЧЕСКОЕ ПО НОРМАМ (МОДУЛЬ) 54.0 мПа НАПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 1 441.321316770382 МПа НАПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 2 21.534537853306 МПа НАПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 3 444.47145673123 МПа НАПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 3 444.671456332025 МПа НАПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 4 394.816765332025 МПа	рсасширения, 1/град	1.'	защемления	0.45
АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 3 444 471425612123 МПа предел прочности, МПа 590 обеадненности) АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 4 305 152785858 МПа прочности, МПа АЛРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 7 364.381897143900 МПа ЛРЯЖЕНИЕ 1 10000000000000000000000000000000000	АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 1 441.921316770382 МПа АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 2 221.534537963306 МПа	Предел текччести, МПа	460	Плотность воды, кг/м3 (и, признак	1000
АIPX3KEHWE ПИИ CDVE LAHUU 5 348 157655302025 MTa ГРУНТ АIPX3KEHWE ПИИ CDVE LAHUU 5 241 8907430387 MTa AIPX3KEHWE ПИИ CDVE LAHUU 7 364 35187143900 MTa AIPX3KEHWE ПИИ CDVE LAHUU 7 364 35187143900 MTa AIPX3KEHWE ПИИ CDVE LAHUU 3 370.0421570175 MTa AIPX3KEHWE ПИИ CDVE LAHUU 3200 AIPX1000 MTa AIPX3KEHWE ПИИ CDVE LAHUU 3200 AIPX1000 MTa AIPX3KEHWE ПИИ CDVE LAHUU AIPX1000 MTa AIPX3KEHWE ПИИ CDVE LAHUU AIPX1000 MTa AIPX1000 MTa AIPX1000 MTa AIPX2HWE CDVE LAHUU AIPX1000 MTa AIPX1000 MTa	АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 3 444.471425612123 МПа АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 4 307.512231786582 МПа	Предел прочности. МПа	590	обводненности)	
АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 7 364.381397143900 МПа ПРОДУКТ Плотность прунта, кг/н3 1500	АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 5 348.167665302025 МПа АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 6 299.199074220297 МПа			ГРУН	T
-3КВИВАЛЕНТНОЕ НАПРЯЖЕНИЕ 444.471 МПа РЕСУРС ПРОЧНОСТИ ПО ЗКВИВАЛЕНТНОМУ НАПРЯЖЕНИЮ 3.376 % Гидорсствическое давление нефти, МПа 88 Угол ен трения 22	АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 7 364.381897143900 МПа АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 7 364.381897143900 МПа АПРЯЖЕНИЕ ПРИ СОЧЕТАНИИ 8 372.042163761075 МПа	проду	YKT	Плотность грунта, кг/м3	1500
РЕСЕРСТПРОЧНОСТИ ПО ЗКОИБАЛЕНТНОМУ ПАПРИЖЕНИЮ 3.376 % Гидростатическое 8.8 Угол вн.трения 22 давление нерти, МПа група, град 22	ЭКВИВАЛЕНТНОЕ НАПРЯЖЕНИЕ 444.471 МПа	Плотность нефти, кг/м3	800	Модуль упругости, МПа	2e4
	TELSECTEURUSTNITU SKONDATERTHUMS HATEMAKEHNI 3.376 %	Гидростатическое давление нефти, МПа	8.8	Угол вн.трения грунта, град	22

Рис. 3. Окно программы STRING с расчетным вариантом № 6

На основе расчета можно сделать следующие выводы:

1. Анализ прочности трубопровода в сложных условиях нагружения необходимо проводить при последовательном наращивании нагрузок до полного комплекса.

2. Для рассматриваемых условий общее число вариантов напряжений составляет 18 сочетаний.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Биргер И. А. Растяжение и изгиб стержней // Прочность, устойчивость, колебания. Т. 1. М.: Машиностроение, 1968. С. 183–238.
- 2. Магистральные трубопроводы. СНиП 2.05.06-85*, с изм. 1996 г.
- Оценка сейсмостойкости магистральных трубопроводов / А.А. Александров, В.А. Котляревский, В.И. Кушнарев и др. // Энциклопедия безопасности. Строительство, промышленность, экология. Т. 3. – М.: Изд-во АСВ, 2010. – С. 132–164.

Статья поступила в редакцию 3.10.2011

Владимир Абрамович Котляревский родился в 1922 г., окончил в 1947 г. Московское краснознаменное высшее военноинженерное училище. Д-р техн. наук, профессор, главный научный сотрудник Научно-образовательного центра исследований экстремальных ситуаций МГТУ им. Н.Э. Баумана. Автор более 400 научных работ в областях изучения взрывных процессов.

V.A. Kotlyarevskii (b. 1922) graduated from The Order of the Red Banner Moscow Higher Military Engineering School in 1947. D. Sc. (Eng.), professor. Chief researcher of the Scientific and Educational Center of Extremal Situation Study of the Bauman Moscow State Technical University. Author of more than 400 publications in the field of study of explosion processes.

