|

Hybrid Fusion-Fission System with Neutron Source Based on Deuterium Plasma

Авторы: Chirkov A.Yu. Опубликовано: 07.06.2020
Опубликовано в выпуске: #3(132)/2020  

DOI: 10.18698/0236-3941-2020-3-94-104

 
Раздел: Энергетическое, металлургическое и химическое машиностроение | Рубрика: Атомное реакторостроение, машины, агрегаты и технология материалов атомной промышленности  
Ключевые слова: deuterium, fusion neutrons, hybrid reactor, magnetic confinement, plasma, energy balance

Development of hybrid fusion-fission systems appears today as a promising area in practical use of thermonuclear fusion energy. Thermonuclear plasma in such systems is the source of fast neutrons with the power gain factor Q < 1 power amplification factor in plasma. Hybrid system high amplification is generally achieved through nuclear reactions in the subcritical blanket surrounding plasma. Not only power could be produced in such a blanket, but also nuclear fuel, and waste of the nuclear fuel cycle could be disposed. The problem of systems using the thermonuclear reaction between deuterium and tritium lies in the lack of tritium reserves and in the limited possibilities of its production. Therefore, the work considers organization of a fuel cycle based on the deuterium-deuterium reaction. Options of a neutron source based on tokamak and linear system of the open trap type were examined. Magnitude of the socalled hybrid system electrical efficiency (ratio of the system electrical output to the blanket thermal power) was estimated. Calculations demonstrated fundamental possibility of realizing substantial neutron yield from deuterium plasma. To achieve acceptable performance, power gain in thermonuclear plasma should be Q = 0.5--1. In a tokamak of reasonable scale and when working on deuterium, the gain should be Q ~ 0.3. Potential advantages of linear systems associated with the possibility of high-pressure plasma confinement are presented

Литература

[1] Shimada M., Campbell D.J., Mukhovatov V., et al. Progress in ITER physics basis. Chapter 1: Overview and summary. Nucl. Fusion, 2007, vol. 47, no. 6, pp. S1--S17. DOI: https://doi.org/10.1088/0029-5515/47/6/S01

[2] Velikhov E.P., Davidenko V.D., Tsibulʼskiy V.F. Some thoughts on nuclear energy future. VANT. Ser. Termoyadernyy sintez [Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion], 2019, vol. 42, no. 1, pp. 5--14 (in Russ.). DOI: https://doi.org/10.21517/0202-3822-2019-42-1-5-14

[3] Taylor C.E., ed. Proc. US--USSR symposium on fusion--fission reactors. CONF-760733. Livermore, 1976.

[4] Pistunovich V.I., ed. Sintez--delenie. Trudy II sovetsko-amerikanskogo seminara [Fusion-Fission. Proceedings II Soviet-American Seminar]. Moscow, Atomizdat Publ., 1978.

[5] Velikhov E.P., Koval’chuk M.V., Il’gisonis V.I., et al. Nuclear energy system based on fissionand fusion reactors is strategic line of nuclear power engineering development. VANT. Ser. Termoyadernyy sintez [Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion], 2017, vol. 40, no. 4, pp. 5--13 (in Russ.). DOI: https://doi.org/10.21517/0202-3822-2017-40-4-5-13

[6] El-Guebaly L.A., Malang S. Toward the ultimate goal of tritium self-sufficiency: technical issues and requirements imposed on ARIES advanced power plants. Fusion Eng. Des., 2009, vol. 84, no. 12, pp. 2072--2083. DOI: https://doi.org/10.1016/j.fusengdes.2008.12.098

[7] Pearson R.J., Antoniazzi A.B., Nuttall W.J. Tritium supply and use: a key issue for the development of nuclear fusion energy. Fusion Eng. Des., 2018, vol. 136-B, pp. 1140--1148. DOI: https://doi.org/10.1016/j.fusengdes.2018.04.090

[8] Zheng S., King D.B., Garzotti L., et al. Fusion reactor start-up without an external tritium source. Fusion Eng. Des., 2016, vol. 103, pp. 13--20. DOI: https://doi.org/10.1016/j.fusengdes.2015.11.034

[9] Stott P.E. The feasibility of using D--3He and D--D fusion fuels. Plasma Phys. Controll. Fusion, 2005, vol. 47, no. 8, pp. 1305--1338. DOI: https://doi.org/10.1088/0741-3335/47/8/011

[10] Khvesyuk V.I., Chirkov A.Yu. Energy production in ambipolar reactors with D--T, D--3He, and D--D fuel cycles. Tech. Phys. Lett., 2000, vol. 26, no. 11, pp. 964--966. DOI: https://doi.org/10.1134/1.1329685

[11] Chirkov A.Yu. Fusion prospects of the field reversed magnetic configuration: reactor regimes. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Science Publication], 2014, no. 12 (in Russ.). DOI: https://doi.org/10.7463/1214.0749481

[12] Chirkov A.Yu. Low radioactivity fusion reactor based on the spherical tokamak with a strong magnetic field. J. Fusion Energ., 2013, vol. 32, no. 2, pp. 208--214. DOI: https://doi.org/10.1007/s10894-012-9554-0

[13] Chirkov A.Yu., Fedyunin D.E. Possible parameters of neutron source based on tokamak with tritium operation in a deuterium plasma. Inzhenernaya fizika [Engineering Physics], 2018, no. 12, pp. 12--18 (in Russ.).

[14] Chirkov A.Yu., Fedyunin D.E. On the feasibility of fusion--fission hybrid based on deuterium fuelled tokamak. Fusion Eng. Des., 2019, vol. 148, art. 111302. DOI: https://doi.org/10.1016/fusengdes.2019.111302

[15] Chirkov A.Yu., Fedyunin D.E., Egorov K.S. Limiting efficiency of fusion neutron source based on deuterium plasma. J. Phys.: Conf. Ser., 2019, vol. 1385, art. 012014. DOI: https://doi.org/10.1088/1742-6596/1383/1/012014

[16] Vesnin V.R., Chirkov A.Yu. Parameters estimation for fusion neutron source based on deuterium plasma. VANT. Ser. Termoyadernyy sintez [Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion], 2018, vol. 41, no. 2, pp. 34--40 (in Russ.).

[17] Chirkov A.Yu., Vesnin V.R. Limiting energy gain in deuterium plasma at powerful injection heating. J. Phys.: Conf. Ser., 2018, vol. 1094, art. 012019. DOI: https://doi.org/10.1088/1742-6596/1094/1/012019

[18] Moir R.W., Manheimer W. Fusion--fission hybrid reactors. In: Magnetic fusion technology. Springer, 2013, pp. 699--742.

[19] Kovari M., Harrington C., Jenkins I., et al. Converting energy from fusion into useful forms. Proc. Inst. Mech. Eng. A, 2014, vol. 228, no. 3, pp. 234--240. DOI: https://doi.org/10.1177/0957650913514230

[20] Entler S., Horacek J., Dlouhy N., et al. Approximation of the economy of fusion energy. Energy, 2018, vol. 152, pp. 489--497. DOI: https://doi.org/10.1016/j.energy.2018.03.130

[21] Sakai R., Fujita T., Okamoto A. Economy of tokamak neutron source for transmutation of transuranics. PFR, 2019, vol. 14, art. 1405040. DOI: https://doi.org/10.1585/pfr.14.1405040

[22] Bagryansky P.A., Shalashov A.G., Gospodchikov E.D., et al. Threefold increase of the bulk electron temperature of plasma discharges in a magnetic mirror device. Phys. Rev. Lett., 2015, vol. 114, no. 20, art. 205001. DOI: https://doi.org/10.1103/PhysRevLett.114.205001

[23] Schultz K.R. Gas-cooled fusion-fission hybrid reactor systems. J. Fusion Energ., 1981, vol. 1, no. 2, pp. 163--183. DOI: https://doi.org/10.1007/BF01050660