Investigation of the Influence of Structural and Adjusting Parameters of a Quadruple-Orifices Electrohydraulic Amplifier on the Static Characteristics of Rocket Pack Steering Actuator

Authors: Belonogov O.B. Published: 20.12.2019
Published in issue: #6(129)/2019  

DOI: 10.18698/0236-3941-2019-6-32-40

Category: Aviation and Rocket-Space Engineering | Chapter: Aircrafts Development, Design and Manufacture  
Keywords: structural and adjusting parameters, electrohydraulic amplifier, steering actuator, static characteristics

The article considered the results of researches of influence of constructional and adjusting parameters of the quadruple-orifices electrohydraulic amplifier on static characteristics of the steering actuator of the rocket pack. The studies are carried out using static analysis methods, including methods for calculating the static characteristics of an autonomous single-stage steering actuator with a quadruple-orifices electrohydraulic amplifier with negative overlapping of throttling windows of rectangular shape by spool plungers. As a result of research it is shown that the steering actuator does not have static stability. It is shown that the slope of the speed characteristic of the steering actuator is exerted by the dimensionless parameter of the local thickness of the incoming liner wall (the driven axis of the three-gear pump). Consequently, with the help of the variation of this parameter, it is possible to adjust the slope angle of the speed characteristic of the steering actuator, i.e., its gain factor. The design solutions of the steering actuator are proposed, which allow improving their output characteristics and facilitating adjustment


[1] Kudryavtsev V.V., Stepan G.A., Shutenko V.I., et al. The rocket steering actuators. IAC’94 International Aerospace Congress. Moscow, Sc. Tech. Comp. "Petrovka", 1995.

[2] Taft C.K., Twill J.P. An analysis of the three-way underlepped hydraulic spool servovalve. J. Dyn. Sys., Meas., Control., 1978, vol. 100, no. 2, pp. 117--123. DOI: 10.1115/1.3426353

[3] Weule H. Eine Durchflubgleichung fur den Laminar-Turbulenten Stromungsbereich. Olhydraulik und Pneumatik, 1974, vol. 18, no. 1, pp. 57--67.

[4] Backe W. Systematik der hydraulischen Widerstandsschaltungen in Ventilen und Regelkreisen. Krausskopf, 1974.

[5] Krassov I.M. Gidravlicheskie elementy v sistemakh upravleniya [Hydraulic elements in control systems]. Moscow, Mashinostroenie Publ., 1967.

[6] Ermakova S.A., ed. Avtomatizirovannoe proektirovanie mashinostroitel’nogo gidroprivoda [Automated engineering of machinery hydraulics]. Moscow, Mashinostroenie Publ., 1988.

[7] Belonogov O.B., Zharkov M.N., Kudryavtsev V.V., et al. Metody rascheta staticheskikh kharakteristik avtonomnykh odnokaskadnykh chetyrekhdrossel’nykh rulevykh mashin [Calculation methods of static behavior of autonomous one-cascade four-throttling steering machines]. Raketno-kosmicheskaya tekhnika. Ser. XII [Rocket-Space Technique. Ser. XII], 1998, iss. 3-4, pp. 178--217 (in Russ.).

[8] Belonogov O.B., Chekanov V.V. Rulevaya mashina [Steering machine]. Patent 2131827 RF. Appl. 20.04.1998, publ. 20.06.1999 (in Russ.).

[9] Belonogov O.B., Chekanov V.V. Rulevaya mashina [Steering machine]. Patent 2293687 RF. Appl. 01.02.2005, publ. 20.02.2007 (in Russ.).

[10] Vachnadze V.D., Ovechko-Filippov E.V., Smolentsev A.A., et al. Development, upgrade phases and results of fifty years of operation of our country’s first closed-loop liquid rocket engine. Kosmicheskaya tekhnika i tekhnologii [Space Technique and Technologies], 2015, no. 2, pp. 82--90 (in Russ.).