Expanding Possible Landing Areas on the Surface of Venus by using Gravity Assist Maneuvers

Authors: Nazirov R.R., Eismont N.A., Zubko V.A., Belyaev A.A., Fedyaev K.S., Zasova L.V., Gorinov D.A., Simonov A.V., Koryanov V.V.  Published: 27.06.2022
Published in issue: #2(141)/2022  

DOI: 10.18698/0236-3941-2022-2-20-42

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control  
Keywords: automatic interplanetary station "Venera-D", lander, landing area, gravity assistmaneuver, resonant orbit, Venus


In the framework of the project "Venera-D" a problem of landing the descent module in a given area of the surface of Venus is considered. With the standard approach to selection of the launch window and with limitations on the value of the re-entry angle into the atmosphere, as well as on the maximum allowable overload for lander during descent, a significant part of the planet’s surface is inaccessible for landing. The simplest way to expand the landing area could be to increase the launch window by moderate reducing the payload mass. However, the potential for such an increase is significantly limited, primarily by the required characteristic velocity cost. In this study a new approach is proposed to ensure landing of the descent module at any point on the surface of Venus. The basis of the proposed approach is the use of the gravitational field of the planet to transfer the spacecraft to the heliocentric orbit, resonant at a ratio of 1:1 with the orbit of Venus, and the subsequent return to its original position in one Venusian year, when another part of the surface will be available for landing. In the presented paper it is shown that application of new approach allows to provide radical expansion of achievable landing areas, and also to provide access to any point on the surface of Venus due to increase of duration of flight and small increase of characteristic velocity costs

Please cite this article in English as:

Nazirov R.R., Eismont N.A., Zubko V.A., et al. Expanding possible landing areas on the surface of Venus by using gravity assist maneuvers. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2022, no. 2 (141), pp. 20--42 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2022-2-20-42


[1] Zasova L.V. Venus investigations by space missions: from Venera-4 to Venera-D. On the 80th anniversary of the birth of M.Ya. Marov. Mekhanika, upravlenie i informatika [Mechanics, Control and Informatics], 2015, vol. 7, no. 3, pp. 102–116 (in Russ.).

[2] Zasova L.V. From history of Venus-еxpress mission. Mekhanika, upravlenie i informatika [Mechanics, Control and Informatics], 2014, vol. 6, no. 4, pp. 186–187 (in Russ.).

[3] Neugebauer M., Snyder C.W. Mariner 2 observations of the solar wind: 1. Average properties. J. Geophys. Res., 1966, vol. 71, no. 19, pp. 4469--4484. DOI: https://doi.org/10.1029/JZ071i019p04469

[4] Titov D.V., Zakutnyaya O.V. Venus-express: main results of the mission first stage. Zemlya i Vselennaya, 2009, no. 6, pp. 26–40 (in Russ.).

[5] Zasova L.V., Gorinov D.A., Eismont N.A., et al. Venera-D: a design of an automatic space station for Venus exploration. Sol. Syst. Res., 2019, vol. 53, no. 7, pp. 506--510. DOI: https://doi.org/10.1134/S0038094619070244

[6] Eismont N.A., Zasova L.V., Simonov A.V., et al. Venera-D mission scenario and trajectory. Vestnik NPO im. S.A. Lavochkina, 2018, no. 4, pp. 11–18 (in Russ.).

[7] Kovalenko I.D., Eismont N.A., Limaye S.S., et al. Micro-spacecraft in Sun-Venus Lagrange point orbit for the Venera-D mission. Adv. Sp. Res., 2020, vol. 66, no. 1, pp. 21--28. DOI: https://doi.org/10.1016/j.asr.2019.10.027

[8] Eismont N.A., Koryanov V.V., Fedyaev K.S., et al. Extension of the spacecraft launch windows to determinate accessible areas on the Venus surface in the frame of the Venera-D project. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Jour-nal: Science and Innovation], 2020, no. 4 (in Russ.).DOI: https://doi.org/10.18698/2308-6033-2020-4-1975

[9] Eismont N.A., Koryanov V.V., Fedyaev K.S., et al. On the possibility of expanding the landing areas within the Venera-D project by selecting launch windows. AIP Conf. Proc., 2021, vol. 2318, no. 1, art. 110012. DOI: https://doi.org/10.1063/5.0037426

[10] Golubev Yu.F., Grushevskiy A.V., Kiseleva I.P., et al. Mission design for Venusian projects of the 2021–2028 years epoch. Launch windows. Preprinty IPM im. M.V. Keldysha [Keldysh Institute Preprints], 2018, no. 76 (in Russ.). DOI: http://doi.org/10.20948/prepr-2018-76

[11] Golubev Yu.F., Grushevskiy A.V., Koryanov V.V., et al. The synthesis of gravity assist maneuvers sequence of the spacecraft to achieve high inclined orbits over ecliptic. Preprinty IPM im. M.V. Keldysha [Keldysh Institute Preprints], 2016, no. 43 (in Russ.). DOI: https://doi.org/10.20948/prepr-2016-43

[12] Borovin G.K., Golubev Yu.F., Grushevskiy A.V., et al. Flights in the Jupiter sys-tem using gravity assists near Galilean satellites. Preprinty IPM im. M.V. Keldysha [Keldysh Institute Preprints], 2013, no. 72 (in Russ.).

[13] Golubev Yu.F., Grushevskiy A.V., Koryanov V.V., et al. To the high inclined orbit formation with use of gravity assists maneuvers. Preprinty IPM im. M.V. Keldysha [Keldysh Institute Preprints], 2015, no. 64 (in Russ.).

[14] Strange N., Russell R., Buffington B. Mapping the V-infinity globe. Adv. Astro-naut. Sc., 2008, vol. 129, art. AAS 07-277.

[15] Uphoff C., Roberts P.H., Friedman L.D. Orbit design concepts for Jupiter orbiter missions. J. Spacecr. Rockets, 1976, vol. 13, no. 6, pp. 348--355. DOI: https://doi.org/10.2514/3.57096

[16] Prado A.F.B.A. A study of the effects of the forces in the ballistic capture by the major primary. Adv. Space Res., 2007, vol. 40, no. 1, pp. 96--101. DOI: https://doi.org/10.1016/j.asr.2007.03.037

[17] Sukhanov A.A. Universal solution of Lambert problem. Kosmicheskie issledo-vaniya, 1988, vol. 26, no. 4, pp. 483–491 (in Russ.).

[18] Tuchin A.G., ed. Ballistiko-navigatsionnoe obespechenie poletov avtomaticheskikh kosmicheskikh apparatov k telam Solnechnoy sistemy [Ballistic-navigation flight maintenance of automatic spacecraft to Solar system bodies]. Khimki, NPO Lavochkina Publ., 2018.

[19] Hintz G.R. Fundamentals of astrodynamics. In: Orbital mechanics and astrodynamics. New York, Springer, 2015, pp. 1--21.

[20] Petropoulos B. Physical parameters of the atmosphere of Venus. Earth Moon Planet., 1988, vol. 42, no. 1, pp. 29–40. DOI: https://doi.org/10.1007/BF00118037

[21] Mishin V.P., ed. Mekhanika kosmicheskogo poleta [Space flight mechanics]. Moscow, Mashinostroenie Publ., 1989.

[22] Petropoulos B. Physical parameters of the atmosphere of Venus. Earth Moon Planet., 1988, vol. 42, no. 1, pp. 29–40. DOI: https://doi.org/10.1007/BF00118037

[23] Eismont N.A., Nazirov R.R., Fedyaev K.S., et al. Resonant orbits in the problem of expanding the reachable landing areas on the surface of Venus. Astron. Lett., 2021, vol. 47, no. 5, pp. 316–330. DOI: https://doi.org/10.1134/S1063773721050042

[24] Eismont N.A., Zubko V.A., Belyaev A.A., et al. Gravity assists maneuver in the problem of extension accessible landing areas on the Venus surface. Open Astron., 2021, vol. 30, no. 1, pp. 103--109. DOI: https://doi.org/10.1515/astro-2021-0013