|

High-Precision Aircraft Guidance System with Axial Acceleration Self-Tuning

Authors: Klishin A.N., Kolesnikova D.S. Published: 14.12.2022
Published in issue: #4(143)/2022  

DOI: 10.18698/0236-3941-2022-4-60-76

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control  
Keywords: adaptive guidance system, homing, stabilization system, aircraft, mathematical simulation

Abstract

Creation of aircraft control systems that provide high quality guidance is an urgent task associated with increasing efficiency of the modern missile systems. Classical autonomous guidance systems without integration with any other external correction systems are making it impossible to ensure high-precision target engagement. An approach based on the use of adaptive guidance system is proposed. Besides, an approach to synthesis and analysis of the self-tuning aircraft control system that implements terminal homing is illustrated. A technique for forming the control system structure is presented ensuring the control quality constant level in all operating modes due to self-tuning of the constituent elements variable coefficients. Structural schemes and control equations were determined to correct the aircraft flight. Implementation of the developed technique on board the aircraft is proposed determining relationship between the aircraft control system parameters and the apparent acceleration. Adaptive system operation is demonstrated on a typical model of the aircraft flying in the atmosphere with guidance at the stationary target. Results of numerical simulation are presented, and high efficiency of the developed technique is revealed

Please cite this article as:

Klishin A.N., Kolesnikova D.S. High-precision aircraft guidance system with axial acceleration self-tuning. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2022, no. 4 (143), pp. 60--76. DOI: https://doi.org/10.18698/0236-3941-2022-4-60-76

References

[1] Gurskiy B.G., Lyushchanov M.A., Spirin E.P., et al. Osnovy teorii sistem upravleniya vysokotochnykh raketnykh kompleksov sukhoputnykh voysk [Theory fundamentals of control systems for high-precision missile systems of the ground forces]. Moscow, Bauman MSTU Publ., 2001.

[2] Hou M., Liang X., Duan G. Adaptive block dynamic surface control for integrated missile guidance and autopilot. Chinese J. Aeronaut., 2013, vol. 26, no. 3, pp. 741--750. DOI: https://doi.org/10.1016/j.cja.2013.04.035

[3] Putov V.V., Nguen V.F., Putov A.V. Adaptive control of the longitudinal motion of unmanned aerial vehicles. Izvestiya SPbSETU “LETI” [Proceedings of Saint Petersburg Electrotechnical University], 2017, no. 4, pp. 35--43 (in Russ.).

[4] Andrievskiy B.R., Fradkov A.L. Adaptive flight control based on parameter identification procedure simultaneously with sliding mode motion. Upravlenie bolshimi sistemami [Large-Scale Systems Control], 2009, no. 26, pp. 113--144 (in Russ.).

[5] Simonov V.F. Adaptive control system of unmanned flying vehicle T-10. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2008, no. 6, pp. 53--59 (in Russ.).

[6] Klishin A.N., Shvyrkina O.S. Parameter selection algorithm for proportional navigation aircraft guidance based on target position. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2016, no. 9 (in Russ.).DOI: http://dx.doi.org/10.18698/2308-6033-2016-9-1534

[7] Shvyrkina O.S., Klishin A.N. [Self-adjusting aircraft control system based on priori information about the target position]. Tez. dok. XLIII Akademicheskikh chteniy po kosmonavtike [Proc. XLII Academic Readings on Cosmonautics]. Moscow, Bauman MSTU Publ., 2019, pp. 386--387 (in Russ.).

[8] Kalinovskiy T.A., Klishin A.N., Ilyukhin S.N. Employing functional lead to im-prove homing system efficiency. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2018, no. 10 (in Russ.). DOI: http://dx.doi.org/10.18698/2308-6033-2018-10-1812

[9] Kaufman H., Bar-Kana I., Sobel K. Direct adaptive control algorithms. New York, Springer-Verlag, 1998.

[10] Nguyen V.B. Application of learning feed-forward controller based on model reference adaptive system for missile stabilization. EESJ, 2021, vol. 1, no. 4-1, pp. 34--39. DOI: https://doi.org/10.31618/ESSA.2782-1994.2021.1.68.11

[11] Ilyukhin S.N., Ramazanova T.K., Klishin A.N. On several approaches to processing the inertial navigation system readings. AIP Conf. Proc., 2019, vol. 2171, no. 1, art. 190011. DOI: https://doi.org/10.1063/1.5133355

[12] Koryanov V.V., Kokuytseva T.V., Toporkov A.G. Concept development of control system for perspective unmanned aerial vehicles. MATEC Web Conf., 2018, vol. 151, art. 04010. DOI: https://doi.org/10.1051/matecconf/201815104010

[13] Pupkov K.A., Faldin N.V., Egupov N.D. Metody sinteza optimalnykh sistem avtomaticheskogo upravleniya [Methods for synthesis of optimum automated control systems]. Moscow, Bauman MSTU Publ., 2000.

[14] Babkov N.A. Teoriya avtomaticheskogo upravleniya. Ch. 1. Teoriya lineynykh sistem avtomaticheskogo upravleniya [Automated control theory. Vol. 1. Theory of linear automated control systems]. Moscow, Vysshaya shkola Publ., 1986.

[15] Benevolskiy C.B., Burlov V.V., Kazakovtsev V.P., et al. Ballistika [Ballistics]. Penza, PAII Publ., 2005.

[16] Lebedev A.A., Karabanov V.A. Dinamika sistem upravleniya bespilotnymi letatelnymi apparatami [Dynamics of control systems for unmanned aircraft]. Moscow, Mashinostroenie Publ., 1965.

[17] Lebedev A.A., Chernobrovkin L.S. Dinamika poleta bespilotnykh letatelnykh apparatov [Flight dynamics of unmanned aircraft]. Moscow, Mashinostroenie Publ., 1973.

[18] Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo upravleniya [Theory of automated control systems]. St. Petersburg, Professiya Publ., 2004.

[19] Morgunov A.P., Derkach V.V. Approksimatsiya eksperimentalnykh krivykh rabotosposobnosti i nadezhnosti [Approximation of experimental curves of performance and reliability]. Omsk, Omsk STU Publ., 2019.