|

Thermostability of casings of gas-discharge tubular water-cooled radiation sources in nonstationary state

Authors: Eliseev V.N., Tovstonog V.A., Borovkova T.V., Pavlova Y.M. Published: 29.03.2016
Published in issue: #2(107)/2016  

DOI: 10.18698/0236-3941-2016-2-45-59

 
Category: Aviation and Rocket-Space Engineering | Chapter: Control and Testing of Aircrafts and their Systems  
Keywords: gas-discharge radiation source, thermal testing, aircraft, thermal resistance

In this research we examine quartz glass and leucosapphire (artificial sapphire) casings, which are used for making powerful water-cooled gas-discharge radiation sources, and we analyze thermostability of these casings. The sources of such type and blocks from them can be successfully used to solve a wide range of problems of thermal and thermo-strengthening field tests of structural elements, such as hypersonic aircraft. A serious problem of using the radiation sources, especially when power is repeatedly boosted, is that at first time after switching on the radiation source in its envelope changes in temperature may occur, exceeding the permissible value (a phenomenon of "thermal shock") and causing its destruction. As part of the assumptions, we formulated a mathematical model of the problem and analyzed the results. The findings of the research show, that even when the power of radiation source exceeds the capacity of existing sources with quartz glass casings in 2.5 times, temperatures in leucosapphire casing and temperature difference along the casing thickness do not limit its performance in heat resistance.

References

[1] Lukashevich V.P., Afanas’ev I.B. Kosmicheskie kryl’ya [Space Wings]. LenTa Ctranstviy Publ., 2009. 498 p.

[2] Zheleznyakova A.N., Surzhikov S.T. Numerical Simulation of Hypersonic Flow Past Model of X-43 Flying Vehicle. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2010, no. 1, pp. 3-19 (in Russ.).

[3] Eliseev V.N., Tovstonog V.A. Teploobmen i teplovye ispytaniya materialov i konstruktsiy aerokosmicheskoy tekhniki pri radiatsionnom nagreve [Heat Transfer and Thermal Tests of Materials and Aerospace Structures under Radiant Heating]. Moscow, MGTU im. N.E. Baumana Publ., 2014. 400 p.

[4] Eliseev V.N., Tovstonog V.A. Analysis of Technical Feasibilities to Create the High-Efficient Radiation-Heating Plants for Thermal Testing of Aerospace Machinery Objects. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2011, no. 1, pp. 57-70 (in Russ.).

[5] Ivanov A.V. Prochnost’ opticheskikh materialov [Strength of Optical Materials]. Leningrad, Mashinostroenie Publ., 1989. 144 p.

[6] Stepan’yants Yu.R. Radiatsionnyy metod termicheskoy obrabotki izdeliy elektronnoy tekhniki [Radiation Heat Treatment of Electronic Articles]. Мoscow, Vyssh. shk. Publ., 1986. 96 p.

[7] Eliseev V.N., Tovstonog V.A., Pavlova Ya.M. Thermal regime analysis of the shell of the powerful gas-discharge emitting source for structure thermal testing. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2015, no. 4, pp. 49-62 (in Russ.). DOI: 10.18698/0236-3941-2015-4-49-62

[8] Optical Elements and Devices. Available at: http://www.optotl.ru/mat/Al2O3 (accessed 05.08.2014).

[9] Quartz Glass. Available at: http://www.stroitelstvo-new.ru/steklo/svojstva-2.shtml (accessed 05.08.2014).

[10] Eliseev V.N. Calculation of Cylindrical Bulb Temperature of Cooled Gas Discharge Tube. Svetotekhnika [Light & Engineering], 1960, no. 3, p. 6 (in Russ.).

[11] Lykov A.V. Teplomassoobmen. Spravochnik [Heat and Mass Transfer. Reference Book]. Moscow, Energiya Publ., 1972. 560 p.

[12] Koshlyakov N.S., Gliner E.B., Smirnov M.M. Uravneniya v chastnykh proizvodnykh matematicheskoy fiziki [Partial Differential Equations of Mathematical Physics]. Moscow, Vyssh. shk. Publ., 1970. 710 p.

[13] Eliseev V.N. Calculation of Radiative-Conductive Heat Transfer in a System Closed by a Semitransparent Envelope. Inzhenerno-fizicheskiy zhurnal [Journal of Engineering Physics and Thermophysics], 2000, vol. 73, no. 1, pp. 107-112.

[14] Kartashev E.M. Analiticheskie metody v teploprovodnosti tverdykh tel [Analytical Methods in the Thermal Conductivity of Solids]. Moscow, Vyssh. shk. Publ., 1979. 416 p.

[15] Belyaev N.M., Ryadno A.A. Metody nestatsionarnoy teploprovodnosti [Methods of Transient Heat Conduction]. Moscow, Vyssh. shk. Publ., 1978. 328 p.

[16] Dobrovinskaya E.R. et al. Sapphire. Material, Manufacturing, Applications. N.Y., Springer, 2009, pp. 109-114.

[17] Pavlushkin N.M. Steklo [Glass]. Moscow, Bukinist Publ., 1973. 488 p.