|

Thermal regime analysis of the shell of the powerful gas-discharge emitting source for structure thermal testing

Authors: Eliseev V.N., Tovstonog V.A., Pavlova Y.M. Published: 02.09.2015
Published in issue: #4(103)/2015  

DOI: 10.18698/0236-3941-2015-4-49-62

 
Category: Aviation and Rocket-Space Engineering | Chapter: Control and Testing of Aircrafts and their Systems  
Keywords: temperature, temperature difference, thermal resistance, emitting source, sapphire, aircrafts, testing, equipment

The article describes the thermal regime analysis results of tubular shells made of leuco sapphire (artificial sapphire), which are used for producing water-cooled gas-discharge emitting sources. Such emitters are necessary, in particular, for improving an experimental gear used for technology groundwork of hypersonic aircrafts. The problem features the analysis of interconnections between the thermal regime of the gas-discharge emitting sources and their powers. The analysis faces a rather complicated dependence of thermal and optical properties of the leuco sapphire on both the length of the emitted wave and the temperature. The article also observes and categorizes the information acquired from both technical publications and electronic resources. The authors explain the main assumptions and formulate a mathematical model of the problem to be solved. It is shown that leuco sapphire tubes can be used for producing water-cooled gas-discharge emitting sources, which have a unit power (a power per a length unit of the discharge gap), which is 2-2.5 times as much as the present sources with the shells made of quartz glass.

References

[1] Leont’ev A.I., Pilyugin N.N., Polezhaev Yu.V., Polyaev V.M., eds. Nauchnye osnovy tekhnologiy XXI veka [Scientific Bases of Technology of the XXI Century]. Moscow, UNPTs Energomash Publ., 2000. 136 p.

[2] Lukashevich V.P., Trufakin V.A., Mikoyan S.A. Vozdushno-orbital’naya sistema "Spiral" [Air-Orbital System "Spiral"]. Available at: http://www.buran.ru (accessed 05.08.2014).

[3] Microcraft/NASA X-43 Hyper-X. Availlable at: http://www.airwar.ru/enc/xpla-ne/x43.html (accessed 05.08.2014).

[4] Zheleznyakova A.N., Surzhikov S.T. Numerical Simulation of Hypersonic Flow Past Model of X-43 Flying Vehicle. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2010, no. 1, pp. 3-19 (in Russ.).

[5] Eliseev V.N., Tovstonog V.A. Analysis of Technical Feasibilities to Create the High-Efficient Radiation-Heating Plants for Thermal Testing of Aerospace Machinery Objects. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2011, no. 1, pp. 57-70 (in Russ.).

[6] Zheleznyakova A.L., Surzhikov S.T. Na puti k sozdaniyu modeli virtual’nogo GLA [On the Way to the Creation of a Model of Virtual HCV]. Moscow, IPMech RAS Publ., 2013. 160 p.

[7] Arinchev S.V., Menzul’skiy S.Yu. Oscillations of Hypersonic Flying Vehicle inside Area of Dynamical Stability. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2010, no. 2, pp. 47-58 (in Russ.).

[8] Eliseev V.N., Tovstonog V.A. Teploobmen i teplovye ispytaniya materialov i konstruktsiy aerokosmicheskoy tekhniki pri radiatsionnom nagreve [Heat Transfer and Thermal Tests of Aerospace Materials and Structures with Radiant Heating]. Moscow MGTU im. N.E. Baumana Publ., 2014. 400 p.

[9] Tovstonog V.A., Merzlikin V.G., Chirin K.V., Maksimov Yu.V., Merzlikina N.P Izluchatel’ teplovoy energii [Thermal Radiator]. Patent RF no. 2529894 on the application no. 2013123324 with priority of 22.05.2013. Registered on 11.08.2014.

[10] Eliseev V.N., Tovstonog V.A., Borovkova T.V. On the Efficiency of Cooling Surfaces with Fins Containing Internal Heat Sources. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2014, no. 2, pp. 28-43 (in Russ.).

[11] Eliseev V.N., Tovstonog V.A., Pavlova Ya.M. On the Problem of Increasing the Power Discharge Radiation Sources for Thermal Tests of Flying Vehicle Constructions. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2014, no. 4, pp. 131-135 (in Russ.).

[12] Availlable at: http://www.elektrosteklo.ru/Al2O3_rus.htm (accessed 05.08.2014).

[13] Availlable at: http://americas.kyocera.com/kicc/pdf/kyocera%20sapphire.pdf (accessed 05.08.2014).

[14] Availlable at: http://www.dia-m.ru/page.php?pageid=30 (accessed 05.08.2014).

[15] Availlable at: http://www.optotl.ru/mat/Al2O3 (accessed 05.08.2014).

[16] Lakhtin Yu.M., Leont’eva V.P. Materialovedenie [Materials Science]. Moscow, Mashinostroenie Publ., 1990. 528 p.

[17] Availlable at: http://www.stroitelstvo-new.ru/steklo/svojstva-2.shtml (accessed 05.08.2014).

[18] Availlable at: http://techsteklo.ru/Optic.html (accessed 05.08.2014).

[19] Lunin B.S., Torbin S.N. Temperature Dependence of the Young’s Modulus of Pure Quartz Glass. Vestn. Mosk. Univ., Ser. 2: Khim. [Moscow Univ. Chem. Bull.], 2000, vol. 41, no. 3, pp. 172-173 (in Russ.).

[20] Kukhling Kh. Spravochnik po fizike [A handbook of Physics]. Moscow, Mir. Publ., 1985. 250 p.

[21] Dobrovinskaya E.V., Litvinov L.A., Pishchik V.V. Entsiklopediya sapfira. [Encyclopedia of Sapphire]. Khar’kov, Institut Kristallografii Publ., 2004. 508 p.

[22] Standard RF 25535-82. Izdeliya iz stekla. Metody opredeleniya termicheskoy stoykosti [Articles Made of Glass. Methods for Thermal Stability Determination].

[23] Kingeri U.D. Vvedenie keramiku [Introduction to Ceramics]. Moscow Stroyizdat Publ., 1969. 456 p.

[24] Eliseev V.N., Tovstonog V.A. Characteristics of High Intensive Heat Radiation Sources and Systems. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2001, no. 4, pp. 3-32 (in Russ.).

[25] Eliseev V.N. The Calculation of the Cylindrical Envelope Temperature of the Cooled Gas-Discharge Lamp. Svetotekhnika [Light & Engineerin], 1969, no. 3, pp. 6 (in Russ.).

[26] M’o Tan. Razrabotka metodicheskogo i algoritmicheskogo obespecheniya teplovykh ispytaniy materialov i elementov konstruktsii v stendakh s gazorazryadnymi istochnikami izlucheniya [Development of Methodical and Algorithmic Support of Thermal Tests of Materials and Structural Elements on the Stands with Gas-Discharge Light Sources]. Diss. kand. tekhn. nauk [Cand. tech. sci. diss.]. Moscow, MGTU im. N.E. Baumana, 2008.

[27] Sergeev O.A., Men’ A.A. Teplofizicheskie svoystva poluprozrachnykh materialov [Thermal Properties of Translucent Materials.]. Moscow, Izd. Standartov Publ., 1977. 288 p.

[28] Availlable at: http://www.crystals.saint-gobain.com/uploadedFiles/SG-Crystals/Do-cuments/sapphire-material-products-properties.pdf (accessed 05.08.2014).