|

Computational and Experimental Research of the High-Speed Gas Flow Structure Near Aircraft Fragments Models

Authors: Kotov M.A., Ruleva L.B., Solodovnikov S.I., Surzhikov S.T. Published: 26.05.2017
Published in issue: #3(114)/2017  

DOI: 10.18698/0236-3941-2017-3-18-30

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts  
Keywords: shock aerodynamic tube, aerothermodynamics, computational and experimental research, shock-wave interaction, aircraft fragments models

The study shows the results of calculation and experimental studies of shock-wave configurations formed during the high-speed gas flow of aircraft fragments models at Mach numbers M = 4-8. We performed a series of experiments with models - semiwedges having single and double apex angles, as well as sharp and blunted edges. The article describes technical works aimed at increasing the accuracy of experimental research. The study also gives the results of modeling by means of the developed author's code of gas dynamic processes fixed experimentally. Finally, we estimate the use of experimental results for validation of the developed calculation codes.

References

[1] Kotov M.A., Kryukov I.A., Ruleva L.B., Solodovnikov S.I., Surzhikov S.T. Numerical and experimental investigation of the hypersonic flow structure in a complex flat duct. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2015, no. 1, pp. 4-21 (in Russ.). DOI: 10.18698/0236-3941-2015-1-4-21

[2] Giperzvukovaya udarnaya aerodinamicheskaya truba (GUAT) [Hypersonic aerodynamic-type shock tube (GUAT)]. Sovremennaya issledovatel’skaya infrastruktura RF: website (in Russ.). Available at: http://ckp-rf.ru/usu/441564 (accessed 24.02.2017).

[3] Isakov S.N., Yurkin S.V. Method of bringing to readiness an inflatable airbag of safety device, safety device for vehicle valve device. Patent US 7.232.152 B2. June 19. 2007. Available at: https://www.google.ch/patents/US7232152 (accessed 23.01.2017).

[4] High frequency ICP® pressure sensor. Model 113B27. PCB Piezotronics: website. Available at: https://www.pcb.com/products.aspx?m=113B27 (accessed 10.02.2017).

[5] GOST R ISO 9000-2008. Sistemy menedzhmenta kachestva. Osnovnye polozheniya i slovar’ [State standard R ISO 9000-2008. Quality management systems. Fundamentals and vocabulary]. Moscow, Standartinform Publ., 2008 (in Russ.). Available at: http://docs.cntd.ru/document/1200068733 (accessed 02.02.2017).

[6] Krasnov N.F., Koshevoy V.N., Danilov A.N., et al. Prikladnaya aerodinamika [Applied aerodynamics]. Moscow, Vysshaya shkola Publ., 1974. 732 p.

[7] Borovoy V.Ya. Techenie gaza i teploobmen v zonakh vzaimodeystviya udarnykh voln s pogranichnym sloem [Gas flow and heat exchange in shock wave and boundary layer interaction zones]. Moscow, Mashinostroenie Publ., 1983. 141 p.

[8] Barth T.J., Jespersen D.C. The design and application of upwind schemes on unstructured meshes. 27th Aerospace Sciences Meeting, 1989. DOI: 10.2514/6.1989-366 Available at: https://arc.aiaa.org/doi/abs/10.2514/6.1989-366

[9] Surzhikov S.T., Shang J. Coupled radiation-gasdynamic model for stardust Earth entry simulation. Journal of Spacecraft and Rockets, 2012, vol. 49, no. 5, pp. 875-888. DOI: 10.2514/1.A32027 Available at: https://arc.aiaa.org/doi/abs/10.2514/1.A32027

[10] Shang J.S., Surzhikov S.T. Nonequilibrium radiative hypersonic flow simulation. Progress in Aerospace Sciences, 2012, vol. 53, pp. 46-65. DOI: 10.1016/j.paerosci.2012.02.003 Available at: http://www.sciencedirect.com/science/article/pii/S0376042112000279

[11] Surzhikov S.T. Radiative-convective heat transfer of a spherically shaped space vehicle in carbon dioxide. High Temperature, 2011, vol. 49, no. 1, pp. 92-107. DOI: 10.1134/S0018151X10051037 Available at: http://link.springer.com/article/10.1134%2FS0018151X10051037