|

Radiation Heat Transfer and Thermal Protection of Air-Gas Channel of Gas Dynamic Plant

Authors: Tovstonog V.A. Published: 05.12.2017
Published in issue: #6(117)/2017  

DOI: 10.18698/0236-3941-2017-6-114-133

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts  
Keywords: gas dynamic installation, high temperatures, radiation heat transfer, thermal protection

The working capacity of high-temperature devices is mostly defined by temperature regimes limited by thermostability of structural materials. One of the fundamental problems, which we discuss in this article, is developing the effective thermal protection systems of heat-stressed constructional elements. In some high-temperature gas dynamic devices the working capacity of air-gas channel is provided by heat-resistant inorganic compounds or ceramic composites with working temperature 2000...2500 K. In this regard, one of the thermal protection methods of constructional elements, which are coupled thermally with air-gas channel considering limitations on using active methods of their thermal protection (like regenerative cooling), is radiation thermal protection method. In current paper we discuss the schemes, algorithms and calculation examples of radiation and convection heat transfer in thermal protection system using radiation shields

References

[1] Kudryavtsev V.M., red. Osnovy teorii i rascheta zhidkostnykh raketnykh dvigateley. V 2 kn. Kn. 2 [Theory fundamentals of liquid rocket engines calculation. In 2 vols. Vol. 2]. Moscow, Vysshaya shkola Publ., 1993. 368 p.

[2] Dobrovolskiy M.V. Zhidkostnye raketnye dvigateli. Osnovy proektirovaniya [Liquid rocket engines. Engineering fundamentals]. Moscow, Bauman MSTU Publ., 2016. 464 p.

[3] ZhRD RD-170 (11D521) i RD-171 (11D520) [ZhRD RD-170 (11D521) and RD-171 (11D520)]. lpre.de: website (in Russ.). Available at: http://lpre.de/energomash/RD-170/index.htm (accessed: 03.07.2017).

[4] Vasin A.A., Kamensky S.D., Katorgin B.I., Kolesnikov A.I., Nosov V.P., Stavrulov A.I., Fedorov V.V., Chvanov V.K. Liquid-propellant rocket engine chamber and its casing. Patent US 6244041 B1. Publ. 01.12.2001. Available at: http://www.google.com/patents/US6244041 (accessed: 03.07.2017).

[5] Fakhrutdinov I.Kh., Kotelnikov A.V. Konstruirovanie i proektirovanie raketnykh dvigateley tverdogo topliva [Designing and engineering of solid-propellant rocket engines]. Moscow, Mashinostroenie Publ., 1987. 328 p.

[6] Koroteev A.S., red. Gazodinamicheskie i teplofizicheskie protsessy v raketnykh dvigatelyakh tverdogo topliva [Gas-dynamic and thermophysical processes in solid-propellant rocket engines]. Moscow, Mashinostroenie Publ., 2004. 512 p.

[7] Sosunov V.A., Chepkin V.M., red. Teoriya, raschet i proektirovanie aviatsionnykh dvigateley i energeticheskikh ustanovok [Theory, calculation and engineering of aircraft engines and propulsions]. Moscow, MAI Publ., 2003. 688 p.

[8] Lefebvre A.H. Gas turbine combustion. Hemisphere Pub. Corp., 1983. 531 p.

[9] Khronin D.V., red. Konstruktsiya i proektirovanie aviatsionnykh gazoturbinnykh dvigateley [Construction and engineering of aircraft gas-turbine engines]. Moscow, Mashinostroenie Publ., 1989. 565 p.

[10] Kopelev S.Z., Gurov S.V. Teplovoe sostoyanie elementov konstruktsii aviatsionnykh dvigateley [Thermal state of aircraft engine constructional details]. Moscow, Mashinostroenie Publ., 1978. 208 p.

[11] Pratt & Whitney J58-P. Ugolok neba: aircraft encyclopedia (in Russ.). Available at: http://www.airwar.ru/enc/engines/j58.html (accessed: 03.07.2017).

[12] Kurziner R.I. Reaktivnye dvigateli dlya bolshikh sverkhzvukovykh skorostey poleta [Jet engines for high supersonic speeds]. Moscow, Mashinostroenie Publ., 1989. 264 p.

[13] Toktaliev P.D., Martynenko S.I. Mathematical model of the cooling system of combustion chambers of aviation ramjet engines using endothermic fuels. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2015, no. 1, pp. 84–98 (in Russ.). DOI: 10.18698/1812-3368-2015-1-84-98

[14] Leontev A.I., Pilyugin N.N., Polezhaev Yu.V., Polyaev V.M., red. Nauchnye osnovy tekhnologiy XXI veka [Scientific basis of XXI century technology]. Moscow, UNPTs "Energomash" Publ., 2000. 136 p.

[15] Alferov V.I., Marchenko V.M. Erbium oxide aerodynamic models in the hypersonic flow. High Temperature, 2012, vol. 50, no. 4, pp. 512–516. DOI: 10.1134/S0018151X12040013 Available at: https://link.springer.com/article/10.1134/S0018151X12040013

[16] Skibin V.A., Solonin V.I., red. Inostrannye aviatsionnye dvigateli. Vyp. 14 [Foreign aircraft engines. Iss. 14]. Moscow, CIAM Publ., 2005. 590 p.

[17] Ginzburg I.P. Teoriya soprotivleniya i teploperedachi [Drag and heat transfer theory]. Leningrad, Leningrad University Publ., 1970. 375 p.

[18] Kutateladze S.S., Leontev A.I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe [Heat-and-mass exchange and friction in boundary turbulent layer]. Moscow, Energiya Publ., 1972. 342 p.

[19] Kovalevskiy V.I., Boykov G.P. Metody teplovogo rascheta ekrannoy izolyatsii [Heat calculations methods for screen isolation]. Moscow, Energiya Publ., 1974. 200 p.

[20] Siegel R., Howell J.R. Thermal radiation heat transfer. McGraw-Hill, 1971. 814 p.

[21] Blokh A.G., Zhuravlev Yu.A., Ryzhkov L.N. Teploobmen izlucheniem [Thermal radiation heat transfer]. Moscow, Energoatomizdat Publ., 1991. 431 p.

[22] Klyuchnikov G.P., Ivantsov A.D. Teploperedacha izlucheniem v ognetekhnicheskikh ustanovkakh [Thermal radiation heat transfer in fire units]. Moscow, Energiya Publ., 1970. 400 p.

[23] Lokay V.I., Bodunov M.N., Zhuykov V.V., Shchukin A.V. Teploperedacha v okhlazhdaemykh detalyakh gazoturbinnykh dvigateley letatelnykh apparatov [Heat transfer in cooled parts of gas-turbine aircraft engines]. Moscow, Mashinostroenie Publ., 1985. 216 p.

[24] Demidovich B.P., Maron I.A. Osnovy vychislitelnoy matematiki [Fundamentals of computational mathematics]. Moscow, Nauka Publ., 1966. 664 p.

[25] Kiselev G.A., Kuts S.M., Shapkin V.E. High-temperature screen vacuum thermal insulation. Teplofizika vysokikh temperatur, 1976, vol. 14, no. 3, pp. 670–673.

[26] Kharlamov A.G. Teploprovodnost vysokotemperaturnykh teploizolyatorov [Heat conductivity of high-temperature heat insulators]. Moscow, Atomizdat Publ., 1979. 100 p.

[27] Baranov A.N., Belozerov L.G., Ilin Yu.S., Kutinov V.F. Staticheskie ispytaniya na prochnost sverkhzvukovykh samoletov [Static structural tests for supersonic aircrafts]. Moscow, Mashinostroenie Publ., 1974. 342 p.

[28] Mezhdunarodnaya standartnaya atmosfera [International standard atmosphere]. Akademik: dictionaries and encyclopedias (in Russ.). Available at: http://dic.academic.ru/dic.nsf/enc_tech/2697 (accessed: 12.07.2017).