|

Performance of a Solar Thermal Propulsion Featuring Latent Heat Storage and Subsequent Hydrogen Burning

Authors: Finogenov S.L., Kolomentsev A.I. Published: 02.08.2018
Published in issue: #4(121)/2018  

DOI: 10.18698/0236-3941-2018-4-55-70

 
Category: Aviation and Rocket-Space Engineering | Chapter: Innovation Technologies of Aerospace Engineering  
Keywords: solar thermal propulsion, latent heat storage, phase-change materials, subsequent hydrogen burning, spacecraft, geostationary orbit

The study deals with performance of solar thermal propulsion featuring hydrogen heating in a high-temperature system consisting of a concentrator, a sunlight absorber and latent heat storage, and subsequent hydrogen burning in oxygen. Oxygen and hydrogen form a high-energy fuel-oxidant system with a high stoichiometric oxidiser-to-fuel ratio. This makes it possible to make the system, which consists of a concentrator, a sunlight absorber and latent heat storage, more compact and simplify its design during initial stages of engine development. Considering the problem of a multi-burn spacecraft transfer from a low Earth orbit into a geostationary one with the mission lasting from 20 to 90 days, we selected a boron and silicon eutectic alloy B*Si for our phase-change heat storage material. We plotted mass, size and performance characteristics of the system consisting of solar thermal propulsion and spacecraft as functions of mission time, for various oxidizer-to-fuel ratios. We show the zones of rational oxygen consumption and determine feasible component mass flow ratios that ensure high efficiency of the transportation operation in terms of mass and performance when mission time is fixed and engine size and mass are limited

References

[1] Frye P.E., Kennedy F.G. Reusable orbital transfer vehicles (ROTV) applications of an integrated solar Upper stage (ISUS). Journal of Propulsion and Power, 1998, vol. 14, no. 6, pp. 1059–1064. DOI: 10.2514/2.5374

[2] Hawk C.W., Adams A.M. Conceptual design of a solar thermal upper stage (STUS) flight experiment. 31st Joint Propulsion Conf. and Exhibit, 1995, AIAA Paper no. 95–2842. DOI: 10.2514/6.1995-2842

[3] Leenders H.C.M., Zandbergen B.T.C. Development of a solar thermal thrusters system. 59th IAC Congress. 2008. Paper IAC-08-D1.1.01.

[4] Wassom S.R., Lester D.M., Farmer G., Holmes M. Solar thermal propulsion IHPRPT demonstration program status. 37th Joint Propulsion Conf. and Exhibit, 2001, AIAA Paper no. 2001–3735. DOI: 10.2514/6.2001-3735

[5] Gilpin M.R., Scharfe D.B., Young M.P., Webb R. Experimental investigation of latent heat thermal energy storage for bi-modal solar thermal propulsion. 12th Int. Energy Conversion Engineering Conf., 2014, AIAA Paper, no. 2014–3832. DOI: 10.2514/6.2014-3832

[6] Koroteev A.S., et al. Kick stages with solar heat propulsion systems for increase of middle-class Soyuz launchers competitiveness. Proc. of the 6th Int. Symp. on Propulsion for Space Transportation, 2002. Paper no. S36.2.

[7] Fedik I.I., Popov E.B. [Power-propulsion plant based on solar thermal storage]. Sbornik nauchnykh dokladov III Mezhdunar. soveshchaniya po problemam energoakkumulirovaniya i ekologii v mashinostroenii, energetike i na transporte [Proc. III Int. Conf. on Problems of Energy Storage and Ecology in Mechanical Engineering, Energetic and Transport]. Moscow, IMASh RAS Publ., 2002. P. 282–292.

[8] Grilikhes V.A., Matveev V.M., Poluektov V.P. Solnechnye vysokotemperaturnye istochniki tepla dlya kosmicheskikh apparatov [Solar high-temperature heat sources for space vehicles]. Moscow, Mashinostroenie Publ., 1975. 248 p.

[9] Fedik I.I., Stepanov V.S., Yakubov V.Ya. Accumulators of electrical and thermal energy based on phase transitions. Sb. nauch. dokladov II Mezhdunar. soveshchaniya po problemam energoakkumulirovaniya i ekologii v mashinostroenii, energetike i na transporte [Proc. II Int. Conf. on Problems of Energy Storage and Ecology in Mechanical Engineering, Energetic and Transport]. Moscow, IMASh RAS Publ., 2001. P. 17–25.

[10] Finogenov S.L., Kolomentsev A.I. Parameters selection of solar thermal rocket engine under flight time limitation. Vestnik MAI, 2016, vol. 23, no. 3, pp. 58–68 (in Russ.).

[11] Finogenov S.L., Kolomentsev A.I. The choice of heat-accumulating materials for solar thermal propulsion. Sibirskiy zhurnal nauki i tekhnologiy [Scientific Journal of Science and Technology], 2016, vol. 17, no. 1, pp. 161–169 (in Russ.).

[12] Kudrin O.I. Solnechnye vysokotemperaturnye kosmicheskie energodvigatelnye ustanovki [Solar high-temperature space power plants]. Moscow, Mashinostroenie Publ., 1987. 247 p.

[13] Finogenov S.L., Kolomentsev A.I., Kudrin O.I. Use of different oxidizers for afterburning of hydrogen heated by solar energy in rocket engine. Sibirskiy zhurnal nauki i tekhnologiy [Scientific Journal of Science and Technology], 2015, vol. 16, no. 3, pp. 680–689 (in Russ.).

[14] Engberg R.C., Lassiter J.O., McGee J.K. Modal survey test of the SOTV 2Х3 meter off-axis inflatable concentrator. 41st Structures, Structural Dynamics, and Materials Conf. and Exhibit, 2000, AIAA Paper no. 00–1639. DOI: 10.2514/6.2000-1639

[15] Finogenov S.L., Kolomentsev A.I., Konstantinov M.S. Performances of spacecraft with solar thermal propulsion. Vestnik KGTU im. A.N. Tupoleva [Vestnik of KNRTU n. a. A.N. Tupolev], 2017, no. 2 (73), pp. 62–69 (in Russ.).

[16] Safranovich V.F., Emdin L.M. Marshevye dvigateli kosmicheskikh apparatov. Vybor tipa i parametrov [Sustainer engines for space vehicles. Choice of type and parameters]. Moscow, Mashinostroenie Publ., 1980. 240 p.

[17] Levenberg V.D. Energeticheskie ustanovki bez topliva [Power plants without fuel]. Leningrad, Sudostroenie Publ., 1987. 104 p.

[18] Levenberg V.D., Tkach M.P., Golstrem V.A. Accumulirovanie tepla. [Heat accumulating]. Kiev, Tehnika Publ., 1991. 112 p.

[19] Finogenov C.L., Kolomentsev A.I. Nonisothermal concentrator-absorber system performances for solar thermal propulsion. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2017, no. 2, pp. 66–83 (in Russ.). DOI: 10.18698/0236-3941-2017-2-66-83

[20] Belik A.A., Egorov Yu.G., Kulkov V.M., Obukhov V.A. Combined schemes of insertion of spacecrafts into GEO using middle-class launchers design-ballistic analysis. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Technic and Technology], 2011, no. 4 (81), pp. 17–21 (in Russ.).