|

Numerical Simulation of Kerosene Dispersion Process by the Centrifugal Atomizer

Authors: Strokach Е.А., Borovik I.N. Published: 12.06.2016
Published in issue: #3(108)/2016  

DOI: 10.18698/0236-3941-2016-3-37-54

 
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts  
Keywords: numerical simulation, Sauter mean diameter, turbulence model, sheet constant, ligament constant, atomization, rocket engine

The aim of this research is to carry a numerical investigation of the linear instability sheet atomization model (LISA) on the example of kerosene dispersion into the air by the centrifugal single-component atomizer under normal conditions. We applied Eulerian-Lagrangian approach for multiphase flow. First, we tested the influence of two model coefficients - sheet constant and ligament constant on the mean Sauter diameter of the spray. Then, we examined the influence of two turbulence models - k-epsilon realizable and k-epsilon standard as well as two assumptions of kerosene droplet drag modeling - spherical and dynamic on the mean Sauter diameter. For the simulations we used ANSYS FLUENT software. Next, we compared the calculation results with the experimental data derived by the method based on Mie theory. Moreover, we determined the influence of model parameters on the experimental data. The findings of the research show that the ligament factor is the only parameter which significantly influences Sauter mean diameter in the dispersion conditions under study. Additionally, we compared the results with the experimental data derived from the analysis of spray formation by various injectors under various flow regimes. Finally, we discussed the results obtained and gave future studies-oriented recommendations.

References

[1] Dityakin Yu.F., Klyachko L.A. Raspylivanie zhidkostey [Liquid Atomizers]. Moscow, Mashinostroenie Publ. 1977. 206 p.

[2] Khavkin Y.I., Tsentrobezhnyie forsunki [Centrifugal Atomizers], Leningrad, Mashinostroenie Publ. 1976. 168 p.

[3] Rauschenbach B.V., Belyy S.A. Fizicheskie osnovy rabochego processa v kamerach sgoraniya VRD [Physical basis of gas turbine engines combustion chamber operation processes]. Мoscow,Glavpoligraphprom Publ., 1964. 522 p.

[4] Bayvel L.P., Orzechowski Z. Liquid atomization. Taylor & Francis, 1993, 475 p.

[5] Nasser Ashgriz. Handbook of atomization and sprays. Springer, 2011, 935 p.

[6] Man Chiu Fung, Kiao Inthanvong, William Yang, Jiguan Tu. Experimental and numerical modeling of nasal spray atomization. Ninth International Conference on CFD in the Minerals and Process Industries. CSIRO, Melbourne, Australia, 10-12 December 2012.

[7] Tashev V.P. Uglevodorodnoe goryuchee na osnove kerosina s prisadkami dlya povysheniya energeticheskoy effektivnosti ZhRD. Diss. kand. tekh. nauk [Kerosene based hydrocarbon fuel with additives for LRPE effectiveness augmentation. Cand. tech. sci. diss.]. Moscow, 2014.

[8] Istomin E.A. Aviatsionnyy GTD v sisteme pozharotusheniya bol’shoy moshchnosti i dal’nosti deystviya. Diss. kand. tekh. nauk [Aicraft gas-turbine engine in the high power and range fire-control unit system. Cand. tech. sci. diss.], Moscow, 2012.

[9] Vasilyev A.P., Kudryavtsev V.M. Osnovy teorii i rascheta zhidkostnych raketnych dvigateley [LRPE theory and calculation fundamentals]. Moscow, Vyssh. shk. Publ., 1983. 703 p.

[10] Vorobyev A.G., Borovik I.N., Khoklov A.N., Lizunevich M.M., Sokol S.A., Gurkin N.K., Kazennov I.S. Modernization of fire test for investigation of working process in liquid rocket engine of small thrust with ecology clean propellant. Vestn. Moskovskogo aviatsionnogo inst. [Bull. Moscow Aviation Inst.], 2010, vol. 17, no. 1. Available at: http://www.mai.ru/science/vestnik/eng/publications.php?ID=13362

[11] Born M., Wolf E. Principles of optics, Cambridge University press, 2002.

[12] Tikhonov A.I., Gocharskiy A.B., Stepanov V.V., Yagola A.G. Chislennye metody resheniya nekorrektnych zadach [Numerical methods for the salvation of ill-posed problems]. Moscow, Nauka Publ., 1990. 232 p.

[13] Shifrin K.S., Kolmakov I.B. Influence of measurement length restrictions on the accuracy of narrow angle scattering method. Izv. Akad. Nauk, Fiz. Atmos. Okeana [Izv., Atmos. Ocean. Phys.], 1966, no. 3. pp. 851-858 (in Russ.).

[14] Dubnischev Yu.N., Arbuzov V.A., Belousov P.P., Belousov P.Ya. Opticheskie metody issledovaniya potokov [Optical methods for flow study]. Novosibirsk, Sib. Univ. Publ., 2003. 418 p.

[15] Rinkevichus B.S. Lasernaya anemometriya [Laser anemomehy]. Moscow, Energiya Publ., 1978, 159 p.

[16] ANSYS (2009). Fluent 14.5 Theory Guide. Ansys Inc., Canonsburg, PA.

[17] Dombrowski N., Hooper P.C. The effect of ambient density or drop formation in sprays. Chemical Engineering Science, 1962, vol. 17, pp. 291-305.

[18] Dombrowski N., Johns W.R. The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets. Chemical Engineering Science, 1963, vol. 18, p. 203.

[19] Senecal P.K., Schmidt D.P., Nouar I., Rutland C.J., Reitz R.D. Modeling High Speed Viscous Liquid Sheet Atomization. International Journal of Multiphase Flow, 1999, vol. 25(6-7), pp. 1073-1097.

[20] O’Rourke P.J. Collective Drop Effects on Vaporizing Liquid Sprays. PhD Thesis. Princeton University, Princeton, New Jersey, 1981.

[21] Morsi S.A., Alexander A.J. An Investigation of Particle Trajectories in Two-Phase Flow Systems. J. Fluid Mech., 1972, vol. 55(2), pp. 193-208.

[22] Liu A.B., Mather D., Reitz R.D. Modeling the Effects of Drop Drag and Breakup on Fuel Sprays. SAE Technical, 1993, Paper 930072.

[23] Tratnig A., Brenn G. Drop size spectra in sprays from pressure-swirl atomizers. Int. J. of Multiphase Flow, 2010, vol. 36, pp. 349-363.