|

Nonisothermal Concentrator-Absorber System Performances for Solar Thermal Propulsion

Authors: Finogenov S.L., Kolomentsev A.I. Published: 12.04.2017
Published in issue: #2(113)/2017  

DOI: 10.18698/0236-3941-2017-2-66-83

 
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts  
Keywords: solar thermal propulsion, concentrator-absorber system, nonisothermal heating, solar high-tempe-rature source of heat, geostationary orbit, upper stage

The study examined solar thermal propulsion (STP) with nonisothermal concentrator-absorber system (CAS) as a power source with high energy efficiency. We used radial-type nonisothermal absorbers, where current temperature of propulsive mass (hydrogen) heating corresponds to radiant flux distribution in the focal light spot of parabolic mirror. We analyzed the thermal processes in the radial absorber of maximum nonisothermal type assuming no radial overflowing warmth, which is justified for mirrors with a diameter of more than 10 m. The study gives the results of numerical integration of absorber radius temperature distribution equation in the differential form for various accuracy parameter values. Moreover, we developed an algorithm for iterative calculation of hydrogen outlet temperature of concentrator-absorber system, determining the specific impulse of the engine. The paper presents the flowchart of the iterative calculation. We used numerical integration data for stating the regress relations, determining the nonisothermal CAS efficiency and updating the existing relations at high temperatures and accuracy parameter values, expedient for high-energy inter-orbital maneuvers. The study determined CAS rational performances in relation to the "solar" upper stage of "Soyuz-2-1b" launcher with the STP use in LEO-to-GEO mission within 60 days. Findings of the research show that if we select optimum performances of the extreme nonisothermal CAS in ranges of the concentrator accuracy parameter Δα= 0,8...1,1° and absorber temperature 3200...3400 K, the payload mass approaches to 2600 kg. At permissible decrease in payload mass (3...4%) the CAS rational characteristics correspond to accuracy parameter Δα = 1,3...1,5° and heating temperature 2800...3000 K; thus requirements to the CAS and its orientation conditions to the Sun are simplified. In this case the permissible angle to the Sun tracking corresponds to 2...2,2° and can be realized rather simple by the state-of-the-art technology. The chosen CAS performances make it possible to provide ballistic efficiency of the solar upper stage with such STP up to 20% higher compared to double-staged CAS use. As compared with the singlestaged STP, the payload mass increase up to 1000 kg, and exceeds modern liquid propulsion efficiency up to 1500 kg.

References

[1] Grilikhes V.A., Matveev V.M., Poluektov V.P. Solnechnye vysokotemperaturnye istochniki tepla dlya kosmicheskikh apparatov [Solar high-temperature thermal source for spacecraft]. Moscow, Mashinostroenie Publ., 1975. 248 p.

[2] Shoji J.M., Frye P.E. Solar thermal propulsion for orbit transfer. AIAA Paper, 1988, no. 3171.

[3] Kudrin O.I. Solnechnye vysokotemperaturnye kosmicheskie energodvigatel’nye ustanovki [Solar high-temperature spacecraft propulsion system]. Moscow, Mashinostroenie Publ., 1987. 247 p.

[4] Caveny L.H., ed. Orbit-raising and maneuvering propulsion: research status and needs. In Ser.: Progress in astronautics and aeronautics. Vol. 89. New York, American Institute of Aeronautics and Astronautics, 1988. 454 p. (Russ. ed.: Kosmicheskie dvigateli: sostoyanie i perspektivy. Moscow, Mir Publ., 1988. 454 p.)

[5] Finogenov S.L., Kolomentsev A.I., Kudrin O.I. Kosmicheskie dvigateli, ispol’zuyushchie solnechnuyu i khimicheskuyu energiyu [Spacecraft engines using solar and chemical energy]. Moscow, MAI Publ., 2016. 100 p.

[6] Leenders H.C.M., Zandbergen B.T.C. Development of a solar thermal thrusters system. 59th 1AC Congress. Glasgow, Scotland, 2008. Paper IAC-08- D1.1.01.

[7] Akimov V.N., Arkhangel’skiy N.I., Koroteev A.S., Kuz’min E.P. Solar propulsion system with arcjet thermal accumulator and working medium post-combustion. Polet [Flight], 1999, no. 2, pp. 20-28 (in Russ.).

[8] Koroteev A.S. Conception of solar propulsion system with arcjet thermal accumulator and working medium post-combustion. Vestnik MAI, 2000, vol. 7, no. 1, pp. 60-67 (in Russ.).

[9] Scharfe D., Young M. A study of solar thermal propulsion system enhancement via thermal storage and thermal-electric conversion. Proceedings of the 59th JANNAF Joint Subcommittee Meeting. Colorado Springs, USA, 2010.

[10] Finogenov S.L., Kudrin O.I. Consistency principle in solar thermal rocket engine engineering. Sistemnyy analiz v tekhnike. Tematicheskiy sbornik nauchnykh trudov. Vyp. 8 [System analysis in technics. Subject collection of thesises]. Moscow, Vuzovskaya kniga Publ., 2005, pp. 36-80.

[11] Finogenov S.L., Kolomentsev A.I. Parameters selection of solar thermal rocket engine under flight time limitation. Vestnik MAI, 2016, vol. 23, no. 3, pp. 58-68 (in Russ.).

[12] Shimizu M. et al. Solar thermal thruster made of single crystal molybdenum. Acta Astro-nautica, 1997, vol. 41, no. 1, pp. 23-28.

[13] Fiot D., Estublier D. Solar thermal propulsion. 6th International Symposium on Propulsion for Space Transportation: Propulsion for Space Transportation of the XXIst Century. 2002. Versailles, France. Paper № S36.1.

[14] Kvasnikov A.V., Kudrin O.I., Mel’nikov M.V. [Radiant and solar energy laboratory for exploration of processes in high-temperature equipment]. Dokl. Vsesoyuz. konf. po ispol’zovaniyu solnechnoy energii [Proc. Russ. conf. on solar energy usage]. Moscow, VNIIT Publ., 1969, pp. 297-343.

[15] Safranovich V.F., Emdin L.M. Marshevye dvigateli kosmicheskikh apparatov. Vybor tipa i parametrov [Spacecraft cruise engines. Choice of type and parameters]. Moscow, Mashinostroenie Publ., 1980. 240 p.

[16] Grossman G., Williams G. Inflatable concentrators for solar propulsion and dynamic space power. Journal of Solar Energy Engineering, 1990, vol. 112, pp. 229-236.

[17] Engberg R.C., Lassiter J.O., McGee J.K. Modal survey test of the SOTV 2x3 meter off-axis inflatable concentrator. AIAA Paper, 2000, no. 01-1639.

[18] Rubanovich I.M. Effect of sun tracking accuracy onto efficiency of helioplants with parabolic concentrators. Geliotekhnika, 1966, no. 4, pp. 44-49 (in Russ.).

[19] Kudrin O.I., Finogenov S.L. Solar rocket engine with staged system of receiver and thermal accumulator. Polet [Flight], 2000, no. 6, pp. 37-41 (in Russ.).