|

Investigating Interaction Intensity between Condensed Phase Particles and Flow Duct Components of a Small-Scale Ramjet

Authors: Voronetskiy A.V., Smolyaga V.I., Aref'ev K.Yu., Filimonov L.A., Abramov M.A. Published: 02.08.2018
Published in issue: #4(121)/2018  

DOI: 10.18698/0236-3941-2018-4-16-36

 
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts  
Keywords: mathematical simulation, two-phase flow, condensed particles, erosion, ramjet

The study deals with mathematical simulation of a two-phase flow in secondary combustion chambers of small-scale ramjets. We present a mathematical model for numerically computing motion trajectories of condensed phase particles in the flow duct of a small-scale ramjet and determining the intensity with which particles characterised by different dispersities affect the secondary combustion chamber walls. We provide the results of our parametric computational investigation of how the particles impact the flow duct walls in the secondary combustion chamber (that is, erosion of said walls) depending on the mode of injecting gaseous products of high-energy condensed compositions into the airflow and on the injection system outlet layout. We formulated recommendations for minimising the effect that condensed phase particles have on the flow duct components of a small-scale ramjet

References

[1] Haddad A., Natan B., Arieli R. The performance of a boron-loaded gel-fuel ramjet. Progress in Propulsion Physics, 2011, no. 2, pp. 499–518.

[2] Varenykh N.M., Shabunin A.I., Sarabev V.I., et al. The main directions of solid pyrote-chnic propellants for high power-ballistic ramjet. Boepripasy i spetskhimiya, 2013, no. 1, pp. 44–50 (in Russ.).

[3] Yanovskiy L.S., ed. Energoemkie goryuchie dlya aviatsionnykh i raketnykh dvigateley [Power-consuming fuel for ramjet and rocket engines]. Moscow, Fizmatlit Publ., 2009. 320 p.

[4] Yanovskiy L.S., ed. Integralnye pryamotochnye vozdushno-reaktivnye dvigateli na tverdykh toplivakh [Integrated solid propellant ramjets]. Moscow, Akademkniga Publ., 2006. 343 p.

[5] Kurth G., Bauer C., Hopfe N. Performance assessment for a throttleable ducted rocket powered lower tier interceptor. 51st AIAA/SAE/ASEE Joint Propulsion Conf. AIAA 2015-4234. DOI: 10.2514/6.2015-4234

[6] Makarovets N.A., Belobragin B.A., Ustinkin A.I., et al. Aktivno-reaktivnyy snaryad [Rocket assisted projectile]. Patent RF RU 2 546 355 C1. App. 13.05.2014, publ. 10.04.2015.

[7] Makarovets N.A., Ivanov I.V., Dolganov M.E., et al. Raketa s vozdushno-reaktivnym dvigatelem [Missile with ramjet]. Patent RF RU 2 585 211 C1. App. 2015.05.13, publ. 27.05.2016.

[8] Voronetskiy A.V. Method of comparative analysis of highly dispersed condensed fuel combustion efficiency in arbitrary geometry solid propellant ramjet burners. Mashinostroenie i kompyuternye tekhnologii [Mechanical Engineering and Computer Science], 2016, no. 1 (in Russ.). Available at: http://technomagelpub.elpub.ru/jour/article/view/71

[9] Menter F.R., Kuntz M., Bender R. A scale-adaptive simulation model for turbulent flow predictions. 41st Aerospace Sciences Meeting and Exhibit. DOI: 10.2514/6.2003-767

[10] Voronetskiy A.V., Toktaliev P.D., Suchkov S.A., Arefev K.Yu., Gusev A.A. Adaptation of ANSYS CAE-system for modelling combustion of condensed fuel particles in ramjet afterburners. Materialy Vserossiyskoy nauch.-tekh. konf. «Raketno-kosmicheskie dvigatelnye ustanovki» [Proc. Russ. Sci.-Tech. Conf. "Aerospace propulsion systems"]. Moscow, Bauman MSTU Publ., 2015. Pp. 95–96.

[11] Trusov B.G. TERRA software system for simulation phase and chemical equilibrium at high temperatures. III Mezhd. simp. «Gorenie i plazmokhimiya» [III Int. Symp. "Combustion and plazmochemistry"]. Alma-Ata, Kazakhstan, 2005. Pp. 52–57 (in Russ.).

[12] Morsi S.A., Alexander A.J. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech., 1972, vol. 55, no. 2, pp. 193–208.

[13] Arefev K.Yu. Modelling of elasto-plastic strains of the condensed particles in the course of two-phase supersonic stream interaction with a wall. Mashinostroenie i kompyuternye tekhnologii [Mechanical Engineering and Computer Science], 2011, no. 8 (in Russ.). Available at: http://engineering-science.ru/doc/216784.html

[14] Alkhimov A.P., Klinkov S.V., Kosarev V.F., Fomin V.M. Kholodnoe gazodinamicheskoe napylenie [Cold gas spraying]. Moscow, Fizmatlit Publ., 2010. 536 p.

[15] Ilchenko M.A. Ustoychivost rabochego protsessa v dvigatelyakh letatelnykh apparatov [Working process stability in aircraft engines]. Moscow, Mashinostroenie Publ., 1995. 320 p.

[16] Averkov I.S., Aleksandrov V.Yu., Arefev K.Yu., Voronetskii A.V., Guskov O.V., Prokhorov A.N., Yanovskii L.S. The influence of combustion efficiency on the characteristics of ramjets. High Temperature, 2016, vol. 54, no. 6, pp. 882–891. DOI: 10.1134/S0018151X16050047 Available at: https://link.springer.com/article/10.1134%2FS0018151X16050047

[17] Van Wie D., DAlessio S., White M. Hypersonic airbreathing propulsion. Johns Hopkins APL Technical Digest, 2005, vol. 26, no. 4, pp. 430–437.

[18] Gremyachkin V. M., Mikhalchuk M.V. Some aspects in the theory of boron combustion. Fiziko-khimicheskaya kinetika v gazovoy dinamike [Physical-Chemical Kinetics in Gas Dynamics], 2014, vol. 15, no. 5 (in Russ.). Available at: http://chemphys.edu.ru/issues/2014-15-5/articles/250

[19] Yagodnikov D.A. Vosplamenenie i gorenie poroshkoobraznykh metallov [Ignition and combustion of metal powder]. Moscow, Bauman MSTU Publ., 2009. 432 p.