|

Study of Hydraulic Characteristics of the Cooling Path of a Model Liquid Rocket Engine Manufactured using Additive Technology of Selective Laser Melting

Authors: Yagodnikov D.A., Aleksandrenkov V.P., Kovalev K.E., Grigoryants A.G., Drenin    A.A. Published: 20.12.2019
Published in issue: #6(129)/2019  

DOI: 10.18698/0236-3941-2019-6-41-52

 
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts  
Keywords: hydraulic characteristics, cooling path, combustion chamber fins, additive technologies, thermal protection

The article discusses hydraulic tests of a model combustion chamber of a liquid-propellant rocket engine with a cooling path made using additive selective laser melting technology. The values of the coefficient of hydraulic resistance in the range of Re = 10--2500 are obtained and the influence of the design features of the cooling tract and its manufacturing technology on the hydraulic characteristics is determined. The results of the performed hydraulic tests confirm the possibility of using additive technologies based on selective laser melting technology for the manufacture of fire and power walls of combustion chambers of liquid rocket engines

The study was supported by the Ministry of Education and Science of the Russian Federation (project no. 9.5645.2017/BCh)

References

[1] Pelevin F.V., Ponomarev A.V., Semenov P.Yu. Recuperative heat-exchange apparatus with porous metal for a liquid-propellant rocket engine. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building], 2015, no. 6, pp. 74--81 (in Russ.). DOI: 10.18698/0536-1044-2015-6-74-81

[2] Pelevin F.V., Avraamov N.I., Orlin S.A., et al. Heat exchange efficiency in porous structural elements of liquid-propellant rocket engines. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2013, no. 4 (in Russ.). DOI: 10.18698/2308-6033-2013-4-698

[3] Grigor’yants A.G., ed. Lazernye additivnye tekhnologii v mashinostroenii [Laser additive technology in mechanical engineering]. Moscow, BMSTU Publ., 2018.

[4] Grigor’yants A.G., Kolchanov D.S., Drenin A.A. [Setup for selective laser meltation of metal powders]. Additivnye tekhnologii: nastoyashchee i budushchee. Mat. IV Mezhdunar. Konf. [Additive Technologies: Present and Future. Proc. IV Int. Conf.]. Moscow, FGUP VIAM Publ., 2018, pp. 221--234 (in Russ.).

[5] Delgado J., Ciurana J., Rodriguez C.A. Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int. J. Adv. Manuf. Technol., 2012, vol. 60, no. 5-8, pp. 601--610. DOI: 10.1007/s00170-011-3643-5

[6] Cheng B., Shrestha S., Chou K. Stress and deformation evaluations of scanning strategy effect in selective laser melting. MSEC, 2016. DOI: 10.1115/MSEC2016-8819

[7] Artemov A.L., Dyadchenko V.Yu., Luk’yashko A.V., et al. Development of design and technology solutions for additive manufacturing of prototype inner lining for combustion chamber of multifunctional liquid-propellant rocket engine. Kosmicheskaya tekhnika i tekhnologii [Space Technique and Technologies], 2017, no. 1, pp. 50--62 (in Russ.).

[8] Yagodnikov D.A. Issledovanie i intensifikatsiya protsessov teploobmena v traktakh okhlazhdeniya s predel’noy stepen’yu orebreniya kamer sgoraniya zhidkostnykh raketnykh dvigateley i energosilovykh ustanovok, vypolnennykh s ispol’zovaniem additivnykh i deformiruyushchikh tekhnologiy [Research and intensification of heat exchange processes in cooling paths with the maximum finning degree of combustion chambers in liquid rocket engines and energy-power plants using additive and deforming technologies. R & D report]. Moscow, BMSTU Publ., 2018.

[9] Idel’chik I.E. Spravochnik po gidravlicheskim soprotivleniyam [Reference book on hydraulic resistance]. Moscow, Mashinostroenie Publ., 1992.

[10] Zubkov N.N. Finning of tubes of heat exchangers by cutting and bending the surface layers. Novosti teplosnabzheniya, 2005, no. 4, pp. 51--53 (in Russ.).

[11] Zubkov N.N., Ovchinnikov A.I., Kononov O.V. Manufacture of heat-exchange surfaces of a new class by deforming cutting. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 1993, no. 4, pp. 79--82 (in Russ.).

[12] Zubkov N.N., Bityutskaya Yu.L. Effect of heat-exchange pin-fin structure parameters on its performance characteristics. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2017, no. 2, pp. 108--120 (in Russ.). DOI: 10.18698/0236-3941-2017-2-108-120