|

Experimental Studies of Rocket Fuels Oxygen--Hydrogen, Oxygen--Methane Ignition by a Semiconductor Laser

Authors: Rebrov S.G., Golubev V.A., Golikov A.N., Morgunov A.E. Published: 08.09.2021
Published in issue: #3(138)/2021  

DOI: 10.18698/0236-3941-2021-3-80-97

 
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts  
Keywords: laser ignition, laser diode, semiconductor laser, low-thrust rocket engine, oxygen--hydrogen, oxygen--methane

The paper presents results of experimental studies aimed at introducing laser ignition of fuel mixtures into aero-space design practice. The source of ignition energy was a semiconductor laser featuring fibre radiation output, operating in a quasi-continuous wave mode. We carried out experiments for oxygen--hydrogen and oxygen--methane fuel types. The purpose of our research was to demonstrate the fundamental possibility of implementing fuel ignition by means of this type of laser, using a rocket engine igniter and a low-thrust rocket engine as examples. Employing semiconductor lasers directly as an ignition source for fuel mixtures in aerospace technology is attractive as it may feasibly reduce the requirements for thermal conditions during operation of the laser ignition system on board a rocket or spacecraft, as well as expand the range of permissible vibration and shock loads. The paper presents experimental results that delineate operating parameter ranges and operation cyclograms for the devices under consideration that ensured stable ignition of oxygen--hydrogen and oxygen--methane fuel mixtures; we also list the required power parameters for a semiconductor laser. The investigation revealed the specifics of using a semiconductor laser-based ignition system, which will be useful in developing laser rocket launching devices, ensuring reliable repeated on-off functionality

References

[1] Borner M., Manfletti C., Hardi J., et al. Laser ignition of a multi-injector LOX/methane combustor. CEAS Space. J., 2018, vol. 10, no. 2, pp. 273--286. DOI: https://doi.org/10.1007/s12567-018-0196-6

[2] Borner M., Manfletti C., Kroupa G., et al. Repetitive laser ignition by optical breakdown of a LOX/H2 rocket combustion chamber with multi-injector head configuration. CEAS Space J., 2017, vol. 9, no. 3, pp. 289--297. DOI: https://doi.org/10.1007/s12567-017-0163-7

[3] Soller S., Rackemann N., Kroupa G. Laser ignition application to cryogenic propellant rocket thrust chambers. LIC, 2017, paper LFA4.3. DOI: https://doi.org/10.1364/LIC.2017.LFA4.3

[4] Hasegawa K., Kusaka K., Kumakawa A., et al. Laser ignition characteristics of GOX/GH2 and GOX/GCH4 propellants. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Exhibit, 2003, no. 2003--4906. DOI: https://arc.aiaa.org/doi/10.2514/6.2003-4906

[5] Phuoc T.X. Laser-induced spark ignition fundamental and applications. Opt. Lasers Eng., 2006, vol. 44, no. 5, pp. 351--397. DOI: https://doi.org/10.1016/j.optlaseng.2005.03.008

[6] Wintner E., Kofler H., Agarwal A.K., et. al. Laser ignition of engines --- a contribution to environmental protection and a challenge to laser technology. Ann. J. Electron., 2014, vol. 8, pp. 1--8.

[7] Rebrov S.G., Golikov A.N., Golubev V.A. Laser ignition of rocket propellants in model combustion chamber. Trudy MAI, 2012, no. 53 (in Russ.). Available at: http://trudymai.ru/published.php?ID=29491

[8] Rebrov S.G., Golikov A.N., Golubev V.A., et al. Raketnyy dvigatel’ maloy tyagi, rabotayushchiy na nesamovosplamenyayushchikhsya gazoobraznom okislitele i zhidkom goryuchem, i sposob ego zapuska [Low-thrust rocket engine running on non-self-igniting gaseous oxidiser and liquid fuel, and method of its starting]. Patent RU 2400644. Appl. 09.06.2009, publ. 27.09.2010 (in Russ.).

[9] Rebrov S.G., Golubev V.A., Golikov A.N. Kamera zhidkostnogo raketnogo dvigatelya ili gazogeneratora s lazernym ustroystvom vosplameneniya komponentov topliva i sposob ee zapuska [Chamber of liquid-propellant rocket engine or gas generator with laser ignition device of fuel components, and its startup method]. Patent RU 2468240. Appl. 04.11.2011, publ. 27.11.2012 (in Russ.).

[10] Rebrov S.G., Golubev V.A., Golikov A.N. Sposob zapuska kamery zhidkostnogo raketnogo dvigatelya ili gazogeneratora s lazernym vosplameneniem topliva i ustroystvo dlya ego osushchestvleniya [Method for launching the camera of a liquid rocket engine or a gas generator with laser igniting fuel and device for its implementation]. Patent RU 2679949. Appl. 09.02.2018, publ. 14.02.2019 (in Russ.).

[11] Rebrov S.G., Golubev V.A., Golikov A.N. Laser ignition of oxygen-hydrocarbon fuels in rocket engines. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2018, no. 7, pp. 77--91 (in Russ.). DOI: https://doi.org/10.18698/0536-1044-2018-7-77-91

[12] Rebrov S.G., Golubev V.A., Kosmachev Yu.P., et al. Laser ignition of liquid-oxygen--gaseous--hydrogen fuel in a large-scale combustion chamber. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2019, no. 12, pp. 104--114 (in Russ.). DOI: https://doi.org/10.18698/0536-1044-2019-12-104-114

[13] Chvanov V.K., Belov E.A., Golubev V.A., et al. Investigation of laser ignition of oxygen--kerosene in the model rig. Trudy NPO Energomash imeni akademika V.P. Glushko [Proceedings of NPO Energomash named after Academician V.P. Glushko], 2012, no. 29, pp. 198--210 (in Russ.).

[14] Chvanov V.K., Ganin I.A., Ivanov N.G., et al. Experimental study of laser ignition of oxygen-kerosene propellant in LRE chambers. Trudy NPO Energomash imeni akademika V.P. Glushko [Proceedings of NPO Energomash named after Academician V.P. Glushko], 2015, no. 32, pp. 113--133 (in Russ.).

[15] Pletnev N.V., Ponomarev N.B., Motalin G.A., et al. Development and testing of the laser system of ignition of rocket engines. Combust. Explos. Shock Waves, 2020, vol. 56, no. 2, pp. 181--187. DOI: https://doi.org/10.1134/S0010508220020094

[16] Rayzer Yu.P. Continuous optical discharge --- maintenance and generation of dense low-temperature plasma by laser radiation. Sorosovskiy obrazovatel’nyy zhurnal, 1996, no. 3, pp. 87--94 (in Russ.).

[17] Yalin A.P. High power fiber delivery for laser ignition applications. Opt. Express, 2013, vol. 21, no. S6, pp. A1102--A1112. DOI: https://doi.org/10.1364/oe.21.0a1102

[18] Mullett J.D., Dearden G., Dodd R., et al. A comparative study of optical fibre types for application in a laser-induced ignition system. J. Opt. A: Pure Appl. Opt., 2009, vol. 11, no. 5, art. 054007. DOI: https://doi.org/10.1088/1464-4258/11/5/054007

[19] Griffiths J., Dowding C., Riley M.J.W., et al. Gas turbine laser ignition via solid core optical fiber? A photon flux density approach. LIC, 2015, paper Th3A.3. DOI: https://doi.org/10.1364/LIC.2015.Th3A.3

[20] Ivanov A.V., Rebrov S.G., Ponomarev N.B., et al. Sposob vosplameneniya komponentov topliva v kamere sgoraniya raketnogo dvigatelya i ustroystvo dlya ego osushchestvleniya (varianty) [Method of inflammation of fuel components in rocket engine combustion chamber and device realising this method (variants)]. Patent RU 2326263. Appl. 14.05.2007, publ. 10.06.2008 (in Russ.).

[21] Ivanov A.V., Rebrov S.G., Golikov A.N., et al. Laser ignition of oxygen--hydrogen, oxygen--methane rocket fuels. Aviakosmicheskaya tekhnika i tekhnologiya [Aerospace Technology], 2008, no. 2, pp. 47--54 (in Russ.).