|

Thermal State of an Aircraft Aerofoil in a High-Velocity Air Flow

Authors: Aliev Az.A., Burkov A.S., Tovstonog V.A., Tomak V.I., Yagodnikov D.A. Published: 05.09.2021
Published in issue: #3(138)/2021  

DOI: 10.18698/0236-3941-2021-3-4-24

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Strength and Thermal Modes  
Keywords: aerodynamic heating, thin aerofoil, oxidising atmosphere, thermal protection, refractory materials, oxides

One of the features of high-velocity atmospheric aircraft is the presence of thin aerofoils with edges characterised by a small blunt radius, subjected to high-temperature aerodynamic heating at temperatures of up to 2000 -- 2500 °C. In order to ensure correct operation of both the power plant producing thrust in such vehicles, assumed to be a supersonic combustion ramjet, and respective aerodynamic controls, the components subjected to high-velocity air flows must retain their geometric stability. A way to ensure their performance is to use methods and means of thermal protection, as well as materials that are resistant to high temperatures in an oxidising atmosphere, while one of the promising trends is employing refractory oxide materials such as oxides of aluminium, zirconium and hafnium. Since this class of materials has low thermal conductivity, large temperature gradients develop in the vicinity of the surface being heated, resulting in temperature stresses, all of which designers should take into account. We analysed the temperature state in a model of an acute zirconium oxide wedge featuring a small blunt radius, subjected to a high-velocity air flow. To reduce the edge temperature and temperature gradients, we propose a design solution implemented as a thermally conductive core lined with a thin layer of zirconium oxide. We consider using aluminium oxide and hafnium boride as core materials

References

[1] DARPA Falcon HTV-2 experimental hypersonic test vehicle. militaryfactory.com: website. Available at: https://www.militaryfactory.com/aircraft/detail.asp?aircraft_id=885 (accessed: 15.02.2021).

[2] Hope D. DARPA readies hypersonic aircraft for Mach 20 launch test. space.com: website. Available at: https://www.space.com/12601-darpa-falcon-hypersonic-aircraft-launch- test-htv-2.html (accessed: 15.02.2021).

[3] Giperzvukovoy letatel’nyy apparat FALCON HTV-2. dogswar.ru: website (in Russ.). Available at: www.dogswar.ru/oryjeinaia-ekzotika/aviaciia/5135-giperzvykovoi-letate.html (accessed: 15.02.2021).

[4] Antsupov O.I., Ishchuk P.L., Kosyak I.V. Hypersonic aircraft: is the danger real. Vozdushno-kosmicheskaya sfera [Aerospace Sphere Journal], 2016, no. 2, pp. 96--105 (in Russ.).

[5] Voennaya chetyrekhstupenchataya raketa-nositel’ legkogo klassa Minotaur IV (Peacekeeper SLV, OSP-2 PK, Minotavr 4) [Minotaur IV 4-stage military small-lift launch vehicle (Peacekeeper SLV, OSP-2 PK, Minotaur 4)]. vpk.name: website (in Russ.). Available at: https://vpk.name/library/f/minotaur-iv.html (accessed: 15.02.2021).

[6] X-51A Waverider. af.mil: website. Available at: https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104467/x-51a-waverider (accessed: 15.02.2021).

[7] Mozgovoy A. With hypersound. Natsionalʼnaya oborona, 2020, no. 11 (in Russ.). Available at: https://oborona.ru/includes/periodics/armament/2013/0523/122910743/detail. shtml (accessed: 15.02.2021).

[8] Kondratyuk E.L. USA study in area of hypersonic aircraft design. Dvigatel’ [Engine], 2013, no. 1, pp. 8--11 (in Russ.).

[9] Buzuluk V.I., Lazarev V.V., Plokhikh V.P. Kontseptsiya letayushchey laboratorii-demonstratora giperzvukovykh tekhnologiy [Conception of flying laboratory for demonstration of hypersonic technology]. V: Problemy sozdaniya perspektivnoy aviatsionno-kosmicheskoy tekhniki [In: Design problems of aerospace technics]. Moscow, FIZMATLIT Publ., 2005, pp. 519--537 (in Russ.).

[10] Sziroczak D., Smith H. A review of design issues specific to hypersonic flight vehicle. Prog. Aerosp. Sc., 2016, vol. 84, рр. 1--28. DOI: https://doi.org/10.1016/j.paerosci.2016.04.001

[11] "Kholod" --- giperzvukovaya letayushchaya laboratoriya ["Kholod" --- hypersonic flying laboratory]. testpilot.ru: website (in Russ.).Available at: http://testpilot.ru/russia/tsiam/holod (accessed: 15.02.2021).

[12] Vachon M.J., Grindle T.J., St. John C.W., et al. X-43A fluid and environmental systems: ground and flight operation and lessons learned. Available at: https://ntrs.nasa.gov/search.jsp?R=20050182779 (accessed: 15.02.2021).

[13] Moses P.L. X-43C flight demonstrator project overview. Available at: https://ntrs.nasa.gov/api/citations/20040042495/downloads/20040042495.pdf (accessed: 15.02.2021).

[14] The Hyper-X program. 14th Ann. Therm. Fluids Anal. Workshop, 2003. Available at: https://tfaws.nasa.gov/TFAWS03/lunch_speakers/hyper-x_tfaws03_ lunch_ speaker.pdf (accessed: 15.02.20 21).

[15] Report of findings X-43A mishap. nasa.gov: website. Available at: https://www.nasa.gov/pdf/47414main_x43A_mishap.pdf (accessed: 15.02.2021).

[16] Baula G.G., Krasnokutskaya A.N., Plastinin Yu.A., et al. Analysis of hypersonic apparatus characteristics of its test trials. Kosmonavtika i raketostroenie [Cosmonautics and Rocket Engineering], 2014, no. 6, pp. 42--48 (in Russ.).

[17] Chzhan V., Syan Sh., Go Ch., et al. Sistema dlya teplovoy zashchity i umen’sheniya lobovogo soprotivleniya sverkhvysokoskorostnogo letatel’nogo apparata [System for thermal protection and reduction of flow resistance of the super-high-speed aircraft]. Patent RU 2671064. Appl. 06.02.2016, publ. 29.10.2018 (in Russ.).

[18] Nosachev L.V. Ustroystvo aktivnoy teplozashchity i modulyatsii aerodinamicheskogo soprotivleniya giperzvukovogo BPLA [Method of hypersonic drone active heat protection and aerodynamic drag]. Patent RU 2558525. Appl. 31.07.2014, publ. 10.08.2015 (in Russ.).

[19] Golovanov A.N., Ruleva E.V., Zima V.P. Sposob okhlazhdeniya golovnoy chasti letatel’nogo apparata [Method for aircraft head-end cooling]. Patent RU 2463209. Appl. 17.05.2011, publ. 10.10.2012 (in Russ.).

[20] Zheleznyakova A.L., Surzhikov S.T. Na puti k sozdaniyu modeli virtual’nogo GLA [On the way to creation of HCV virtual model]. Moscow, IPMech RAS Publ., 2013 (in Russ.).

[21] Goonko Yu.P., Mazhul I.I. Analysis of possible improvement of acceleration of a high-velocity air-breathing flying vehicle. Thermophys. Aeromech., 2008, vol. 15, no. 3, pp. 427--441.

[22] Korobkov A.A. Methodological support for calculation of the thermal protection characteristics of HA. Trudy MAI, 2011, no. 45 (in Russ.).Available at: http://trudymai.ru/published.php?ID=25417

[23] Zarubin V.S., Leonov V.V., Zarubin V.S. Jr. Temperature state of the anisotropic spherical layer during convective heat exchange with the environment. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2019, no. 4, pp. 40--55 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2019-4-40-55

[24] Dombrovskiy L.A., Kokurin L.A., Polezhaev Yu.V. Sposob nerazrushayushcheysya teplovoy zashchity peredney kromki letatel’nogo apparata ot vozdeystviya intensivnogo teplovogo potoka i perednyaya kromka letatel’nogo apparata s nerazrushayushcheysya teplovoy zashchitoy [Method of nondestructive thermal protection of leading edge of flying vehicle against intensive thermal flux and leading edge of flying vehicle with nondestructive thermal protection]. Patent RU 2149808. Appl. 08.06.1999, publ. 27.05.2000 (in Russ.).

[25] Shestakov A.A., Goryaev A.N., Smirnov A.S., et al. Perednyaya kromka letatel’nogo apparata v usloviyakh ee aerodinamicheskogo nagreva [Leading edge of a hypersonic aircraft under the conditions of its aerodynamic heating]. Patent RU 2613190. Appl. 04.12.2015, publ. 15.03.2017 (in Russ.).

[26] Kernozhitskiy V.A., Kolychev A.V. Krylo giperzvukovogo letatel’nogo apparata v usloviyakh ego aerodinamicheskogo nagreva [Wing of a hypersonic aircraft under the conditions of its aerodynamic heating]. Patent RU 2572009. Appl. 05.11.2014, publ. 27.12.2015 (in Russ.).

[27] Kernozhitskiy V.A., Kolychev A.V., Okhochinskiy D.M. Termoemissionnyy sposob teplovoy zashchity chastey letatel’nykh apparatov pri ikh aerodinamicheskom nagreve [Thermionic emission method for thermal protection of aircrafts during their aerodynamic heating]. Patent RU 2404087. Appl. 03.11.2009, publ. 20.11.2010 (in Russ.).

[28] Kolychev A.V. Active thermionic thermal protection of elements of a design of the hypersonic flying machine at their aerodynamic heating and borders of its applicability. Trudy MAI, 2013, no. 68 (in Russ.). Available at: http://www.trudymai.ru/published.php?ID=41732

[29] Kashcheev I.D., Zemlyanoy K.G., Dzerzhinskiy R.V., et al. The investigation of the refractories thermal stability for the pulse high-temperature installations. Novye ogneupory [New Refractories], 2016, no. 7, pp. 43--47 (in Russ.).

[30] Sorokin O.Yu., Grashchenkov D.V., Solntsev S.St., et al. Ceramic composite materials with high oxidation resistance for the novel aircrafts (review). Trudy VIAM [Proceedings of VIAM], 2014, no. 6 (in Russ.). Available at: http://viam-works.ru/ru/articles?art_id=675

[31] Marmer E.N. Materialy dlya vysokotemperaturnykh vakuumnykh ustanovok [Materials for high-temperature vacuum plants]. Moscow, FIZMATLIT Publ., 2007.

[32] Tovstonog V.A., Tomak V.I., Yagodnikov D.A., et al. [On some special aspects of high temperature regimes at thermal tests of high-temperature ceramics in high-velocity gas flows]. Vysokotemperaturnye keramicheskie kompozitsionnye materialy i zashchitnye pokrytiya. Materialy IV Vseros. nauch.-tekh. konf. [High-Temperature Ceramic Composites and Protective Coatings. Proc. IV Russ. Sc.-Tech. Conf.]. Moscow, VIAM Publ., 2020, pp. 113--125 (in Russ.).

[33] Pryamilova E.N., Poylov V.Z., Lyamin Yu.B. Thermochemical stability of the ceramics based on zirconium and hafnium borides. Vestnik PNIPU. Khimicheskaya tekhnologiya i biotekhnologiya [PNRPU Bulletin. Chemical Technology and Biotechnology], 2014, no. 4, pp. 55--67 (in Russ.).

[34] Sevast’yanov V.G., Simonenko E.P., Gordeev A.N., et al. Production of ultrahigh temperature composite materials HfB2-SiC and the study of their behavior under the action of a dissociated air flow. Russ. J. Inorg. Chem., 2013, vol. 58, no. 11, pp. 1269--1276. DOI: https://doi.org/10.1134/S003602361311017X

[35] Samsonov G.V., Serebryakova T.I., Neronov V.A. Boridy [Borides]. Moscow, Atomizdat Publ., 1975.