Modification of Heat-Resistant Epoxy Resins by Carbon Nanotubes

Authors: Marakhovskiy P.S., Kondrashov S.V., Akatenkov R.V., Aleksashin V.M., Anoshkin I.V., Mansurova I.A. Published: 15.04.2015
Published in issue: #2(101)/2015  

DOI: 10.18698/0236-3941-2015-2-118-127

Category: Metallurgy and Science of Materials | Chapter: Nanotechnologies and Nanomaterials Material Science  
Keywords: carbon nanotubes, epoxy resin, nanocomposite, glass transition temperature, elasticity modulus at bending

Curing of epoxy composites modified by carbon nanotubes is studied. Carbon nanotubes (CNT) УНТ-2, УНТ-5 (manufacturer "Granat") are used, as well as CNT (manufacturer "Bayer") with specific surface areas of 0.08m2/g, 0.05m2/g, 0.025 m2/g, respectively. The effects of increased glass transition temperature and increased elasticity modulus are observed at bending the manufactured compositions. It is shown that a higher conversion level can be reached in modified compositions under condition of the reaction deceleration and acting steric hindrances as compared to initial ones. Application of binding additives modified by carbon nanotubes to produce polymeric composites allows in some cases to increase glass transition point and elasticity modulus at bending the modified hybrid composites.


[1] Borodulin A.S. Nanomodifiers for polymeric composite materials. Vse materialy. Entsiklopedicheskiy spravochnik [All materials. Encyclopedic reference book], 2012, no. 6, pp. 51-57 (in Russ.).

[2] Lubineau G., Rahaman A. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements. Carbon, 2012, vol. 50, pp. 2377-2395.

[3] Bekyarova E., Thostenson E.T., Yu A., Itkis M.E., Fakhrutdinov D., Chou T.-W., Haddon R.C. Functionalized Single-Walled Carbon Nanotubes for Carbon Fiber-Epoxy Composites. J. Phys. Chem. C, 2007, vol. 111, pp. 17865-17871.

[4] Gojny F.H., Wichmann M.H.G., Fiedler B., Bauhofer W., Schulte K. Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites. Part A, 2005, vol. 36, pp. 1525-1535.

[5] Gorbatikh L., Lomov S.V., Verpoest I. Nano-engineered composites: a multiscale approach for adding toughness to fibre reinforced composites. Procedia Engineering, 2011, vol. 10, pp. 3252-3258.

[6] Qiu J., Zhang C., Wang B., Liang R. Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology, 2007, vol. 18, no. 27, pp. 275708-275718.

[7] Inam F., Wong D.W.Y., Kuwata M., Peijs T. Multiscale Hybrid MicroNanocomposites Based on Carbon Nanotubes and Carbon Fibers. J. of Nanomaterials, 2010, pp. 453420-453431.

[8] Sui G., Zhong W.H., Liu M.C., Wu P.H. Enhancing mechanical properties of an epoxy resin using "liquid nano-reinforcements". Materials Science and Engineering A, 2009, vol. 512, pp. 139-142.

[9] Gojny F.H., Wichmanna M.H.G., Kopke U., Fiedler B., Schulte K. Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Composites Science and Technology, 2004, vol. 64, pp. 23632371.

[10] Wang S., Liang Z., Liu T., Wang B., Zhang C. Effective amino-functionalization of carbon nanotubes for reinforcing epoxy polymer composites. Nanotechnology, 2006, vol. 17, pp. 1551-1557.

[11] Bogatov V.A., Kondrashov S.V., Mansurova I.A., Minakov V.T., Anoshkin I.V. On mechanism of epoxy resins strengthening by carbon nanotubes. Vse materialy. Entsiklopedicheskiy spravochnik [All materials. Encyclopedic reference book], 2012, no. 4, pp. 7-11 (in Russ.).

[12] Rakov E.G., Grishin D.A., Gavrilov Yu.V, Rakova E.V., Nasibulin A.G., Dzhian Kh., Kauppinen E.I. Morphology of pyrolytic carbon nanotubes with small number of layers. Zh. Fiz. Khim. [Physical chemistry], 2004, vol. 78, pp. 2204-2209 (in Russ.).

[13] Khung N.Ch., Anoshkin I.V., Dement’ev A.P., Katorov D.V., Rakov E.G. Functionalization and solubilization ofthin carbon nanotubes. Neorganich. Materialy [Inorganic Materials], 2008, vol. 44, no. 3, pp. 270-274 (in Russ.).

[14] Xie H., Liu B., Yuan Z, Shen J., Cheng R. Cure Kinetics of Carbon Nanotube/Tetrafunctional Epoxy Nanocomposites by Isothermal Differential Scanning Calorimetry. J. of Polymer Science. Part B: Polymer Physics, 2004, vol. 42, pp. 3701-3712.

[15] Valentini L., SnArmentano SnI., Puglia D., Kenny J.M. Dynamics of amine functionalized nanotubes/epoxy composites by dielectric relaxation spectroscopy. Carbon, 2004, vol. 42, pp. 323-329.

[16] Puglia D., Valentini L., SnArmentano SnI., Kenny J.M. Dynamics of amine functionalized nanotubes/epoxy composites by dielectric relaxation spectroscopy. Diamond and Related Materials, 2003, vol. 12, pp. 827-832.

[17] Akatenkov R.V., Kondrashov S.V., Fokin A.S., Marakhovskiy P.S. Peculiarities of polymer networks formation at curing of epoxy oligomers with funtionalized nanotubes. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2011, no. 2, pp. 31-37 (in Russ.).

[18] Gunyaev G.M., Chursova L.V., Komarova O.A., Gunyaeva A.G. Structural carbon-filled plastics modified by nanoparticles. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies. Appendix "All-Russian Institute of Aviation Materials - 80 years"], 2012, pp. 277-286 (in Russ.).