|

Kinematics of Strain Wave Gears with an External Deformation Wave Generator

Authors: Timofeev G.A., Yaminskiy N.A., Samoilov D.E. Published: 14.12.2022
Published in issue: #4(143)/2022  

DOI: 10.18698/0236-3941-2022-4-77-88

 
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science  
Keywords: strain wave gear, ring wave generator, kinematic accuracy, reliability, durability, efficiency

Abstract

The development of automatic control systems, tracking systems and industrial robotics requires the creation of new generation drive systems with high efficiency, kinematic accuracy, reliability, durability with small axial and radial dimensions and weight. To implement tracking systems with power differentials, transmission mechanisms with two degrees of freedom are required to provide the transformation and summation of two movements of drive motors into the required movement of the drive output shaft. These requirements in single-channel tracking systems are well met by strain wave gears (SWG) with low-inertia disk and ring wave generators. They allow for wide layout possibilities, the ability to route cables through the hollow central shaft of the drive, high torsional rigidity and low moments of inertia, which are in the range of 250 to 400 times less than those of cam wave generators, thus ensuring high drive speed. There are practically no publications, except domestic ones, devoted to the study of SWG with ring wave generators. This scientific direction of research is carried out at the Bauman Moscow State Technical University. Structural schemes of SWG with ring generators of external deformation waves are considered, the features of the kinematics of these gears are studied, and recommendations for improving their quality indicatorsare proposed

Please cite this article in English as:

Timofeev G.A., Yaminskiy N.A., Samoilov D.E. Kinematics of strain wave gears with an external deformation wave generator. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2022, no. 4 (143), pp. 77--88 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2022-4-77-88

References

[1] Musser C.W. Strain wave gearing. Patent US 2906143. Appl. 21.03.155, publ. 29.09.1959.

[2] Malogabaritnye reduktory CSF ot Harmonic Drive [Packaged reducers on Harmonic Drive]. catalog.gaw.ru: website (in Russ.). Available at: http://catalog.gaw.ru/index.php?page=document&id=37585 (accessed: 15.09.2022).

[3] Ginzburg E.G. Volnovye zubchatye peredachi [Wave gears]. Moscow, Mashinostroenie Publ., 1969.

[4] Frolov K.V., Vorobyev E.I., eds. Mekhanika promyshlennykh robotov [Mechanics of industrial robots]. Moscow, Vysshaya shkola Publ., 1989.

[5] Kraynev A.F. Mekhanika mashin. Fundamentalnyy slovar [Mechanics of machines. Fundamental dictionary]. Moscow, Mashinostroenie Publ., 2000.

[6] Timofeev G.A., Tarabarin V.B., Yaminskiy A.V. Konstruktsii i SAPR VZP s generatorami voln vnutrennego i vneshnego deformirovaniya [Constructions and CAD of wave gears with wave generators of internal and external deformation]. Moscow, VNIITI Publ., 1988.

[7] Timofeev G.A., Samoylova M.V. Comparative analysis of the wave gear drive kinematic diagram for servo-type mechanisms. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2015, no. 4 (103), pp. 109--118 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3941-2015-4-109-118

[8] Samoylova M.V. Issledovanie kombinirovannykh planetarno volnovykh mekhanizmov. Dis. kand. tekh. nauk [Study in hybrid planetary-wave mechanisms. Cand. Sc. (Eng.). Diss.]. Moscow, Bauman MSTU, 2000 (in Russ.).

[9] Kostikov Yu.V., Timofeev G.A., Fursyak F.I. New in wave gears designing. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2012, no. 12, pp. 3--6 (in Russ.).

[10] Timofeev G.A., Samoylova M.V. Geometric-kinematic study of combined planetary-wave mechanism. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2012, no. 1, pp. 70--80 (in Russ.).

[11] Poletuchiy A.I. Teoriya i konstruirovanie vysokoeffektivnykh volnovykh zubchatykh mekhanizmov [Theory and design of high efficient wave gear mechanisms]. Kharkov, KhAI im. M. Zhukovskogo Publ., 2005.

[12] Timofeev G.A., Podchasov E.O. The analysis of jamming in gearings of non-power harmonic drives. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2016, no. 4, pp. 16--21 (in Russ.). DOI: http://dx.doi.org/10.18698/0536-1044-2016-4-16-21

[13] Shuvalov S.A. Teoriya i avtomatizirovannoe proektirovanie volnovykh zubchatykh peredach. Avtoref. dis. d-ra tekh. nauk [Theory and CAD of wave gears. Abs. Dr. Sc. (Eng.). Diss.]. Moscow, Bauman MHTU, 1986 (in Russ.).

[14] Andrienko L.A. Razrabotka novykh metodov proektirovaniya i diagnostiki elektromekhanicheskikh privodov. Avtoref. dis. d-ra tekh. nauk [Development of new methods for design and diagnostics of electromechanical drives. Dr. Sc. (Eng.). Abs. Diss.]. Moscow, Bauman MSTU, 2001 (in Russ.).

[15] Timofeev G.A. Razrabotka metodov rascheta i proektirovaniya volnovykh zubchatykh peredach dlya privodov sledyashchikh sistem. Dis. d-ra tekh. nauk [Development of design and calculation methods for follow-up wave gears. Dr. Sc. (Eng.). Diss.]. Moscow, In-t mashinovedeniya, 1997 (in Russ.).

[16] Tarabarin V.B., Timofeev G.A. Volnovaya peredacha [Wave gear]. Patent USSR 541057. Appl. 14.08.1973, publ. 30.12.1976 (in Russ.).

[17] Chemodanov B.K., ed. Sledyashchie privody. T. 1. Teoriya i proektirovanie sledyashchikh privodov [Follow-up gears. Vol. 1. Theory and design of follow-up gears]. Moscow, Bauman MSTU Publ., 1999.