|

Experimental Evaluation of Carbon Fiber Reinforced Plastics Machining Modes by Nanosecond Pulsed Ytterbium Fiber Laser

Authors: Kotov S.A., Lyabin N.A., Blinkov V.V., Kondratyuk D.I., Bibik O.B., Popov D.S. Published: 14.02.2017
Published in issue: #1(112)/2017  

DOI: 10.18698/0236-3941-2017-1-73-85

 
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment of Mechanical and Physical Processing  
Keywords: pulsed ytterbium fiber laser, laser treatment, heat affected zone, polymer composites, carbon fiber reinforced plastics

The study tested the problem of effective machining of products made of carbon fiber reinforced plastics (CFRP) based on thermosetting binders due to the high level of their strength properties, versatility and ability to provide the minimum product weight. This issue has become relevant at present time. Traditional machining methods (mechanical and hydroabrasive machining) have some significant disadvantages - high tool wear, material delamination due to the vibration and shock loadings, limitations on the cutting contour and others. One of the most promising solutions for eliminating these problems in conventional methods is CFRP laser machining, as it is a non-contact, flexible in operation, efficient machining method. We conducted experimental research to determine the process variables of laser machining of 1 mm thick CFRP with epoxy resins matrix for acceptable heat affected zone (HAZ) and cut channel geometry. We built a set-up on the basis of a widely used in modern industry nanosecond pulsed ytterbium fiber laser with a wavelength of 1.06 microns and an average output power of 20 watts. We developed a method for evaluating the quality of machining. According to the research results, we formulated recommendations on the choice of algorithm and process variables of the machining conditions, providing the required quality of the parts in accordance with the established criteria.

References

[1] Mikhaylin Yu.A. Voloknistye polimernye kompozitsionnye materialy v tekhnike [Fiber polymer composite materials in engineering]. Sankt-Petersburg, Nauchnye osnovy i tekhnologii Publ., 2015. 720 p.

[2] Negarestani R., Li L. Laser machining of fibre-reinforced polymeric composite materials. In: Machining technology for composite materials. Principles and practice. Woodhead Publishing Ltd., 2012. Р. 288-308.

[3] Goeke A., Emmelmann S. Influence of laser cutting parameters on CFRP part quality. Physics Procedia, 2010, vol. 5, part B, pp. 253-258. DOI: 10.1016/j.phpro.2010.08.051 Available at: http://www.sciencedirect.com/science/article/pii/S1875389210004773

[4] Takahashi K., Tsukamoto M., Masuno S., Sato Y., Yoshida H., Tsubakimoto K., Fujita H., Miyanaga N., Fujita M., Ogata H. Influence of laser scanning conditions on CFRP processing with a pulsed fiber laser. Journal of Materials Processing Technology, 2015, vol. 222, pp. 110-121. DOI: 10.1016/j.jmatprotec.2015.02.043 Available at: http://www.sciencedirect.com/science/article/pii/S0924013615001004

[5] Weber R., Hafner M., Michalowski A., Graf T. Minimum damage in CFRP laser processing. Physics Procedia, 2011, vol. 12, part B, pp. 302-307. DOI: 0.1016/j.phpro.2011.03.137 Available at: http://www.sciencedirect.com/science/article/pii/S1875389211002161

[6] Weber R., Freitag C., Kononenko T., Hafner M., Onuseit V., Berger P., Graf T. Short-pulse laser processing of CFRP. Physics Procedia, 2012, vol. 39, pp. 137-146. DOI: 10.1016/j.phpro.2012.10.023 Available at: http://www.sciencedirect.com/science/article/pii/S1875389212025503

[7] Veyko V.P. Tekhnologicheskie lazery i lazernoe izluchenie. Opornyy konspekt lektsiy po kursu "Fiziko-tekhnicheskie osnovy lazernykh tekhnologiy" [Tehnological lasers and laser emission. In: Supportive lecture notes on course: "Physics-technical principles of laser technologies"]. Sankt-Petersburg, SPbGU ITMO Publ., 2007. 52 p.

[8] Vaks E.D., Milen’kiy M.N., Saprykin L.G. Praktika pretsizionnoy lazernoy obrabotki [Practice of precision laser work]. Moscow, Tekhnosfera Publ., 2013. 696 p.

[9] Leone S., Genna S., Tagliaferri V. Fibre laser cutting CFRP thin sheets by multi-passes scan technique. Optics and Lasers in Engineering, 2014, vol. 53, pp. 43-50. DOI: 10.1016/j.optlaseng.2013.07.027 Available at: http://www.sciencedirect.com/science/article/pii/S0143816613002431

[10] Cenna A., Mathew R. Evaluation of cut quality of fibre-reinforced plastics - a review. Int. J. Mach. Tools Manufact., 1997, vol. 37, no. 6, pp. 723-736.

[11] Canisius M., Herzog D., Schmidt-Lehr D., Oberlander M., Albert F., Broetje S., Ploog R., Emmelmann S. Virtual process chain for simulation of heat affected zones during laser cutting of carbon fibre-reinforced plastics. NAFEMS Seminar "Simulation of Composites - A Closed Process Chain?". Leipzig, 2014. Available at: http://www.scansonic.de/files/publikationen/nafems_simulation_of_composites.pdf (accessed 17.12.16).

[12] Gureev D.M., Kuznetsov S.I., Petrov A.L. Laser cutting of carbon composites. Izvestiya Samarskogo nauchnogo tsentra RAN [Proceedings of the Samara Scientific Center of the Russian Academy of Sciences], 1999, no. 2, pp. 255-264 (in Russ.).

[13] Grigor’yants A.G., Sokolov A.A. Lazernaya obrabotka nemetallicheskikh materialov. Kniga 4 [Laser work of nonmetallic materials. Vol. 4]. Moscow, Vysshaya shkola Publ., 1988. 191 p.