|

Evaluation of the Composite Barrier Natural Oscillations Influence on the Generated Shock Loading

Authors: Borozenets A.S., Proskurin A.V., Shlishevskiy A.V. Published: 28.03.2021
Published in issue: #1(136)/2021  

DOI: 10.18698/0236-3941-2021-1-103-113

 
Category: Mechanical Engineering and Machine Science | Chapter: Machines, Units and Technological Processes  
Keywords: reinforced concrete barrier, shock loading, longitudinal oscillations, piezo accelerometer, digital filtering, spectral density

The problem of studying behavior of various structures under the influence of intense impulsive (shock) loads arising during operation of many modern facilities, machines and devices remains relevant for many years. Shock loading in laboratory conditions is generated due to interaction between the test object and the braking device (barrier). In this case, braking device or barrier could be a one-piece or a prefabricated structure. If the braking device (barrier) dimensions commensurate with the test object, the braking device natural oscillation frequencies excited during interaction between the test object and the braking device (barrier) could be found in the range of the test object natural oscillation frequencies. Frequency determination within the signal spectrum registered on the test object and caused by oscillations of the braking device (barrier) or test equipment, would assist in better assessing the test object shock loading and its compliance with real operating conditions

References

[1] Proskurin A.V. Vosproizvedenie udarnykh uskoreniy v laboratornykh usloviyakh [Laboratory reproduction of shock accelerations]. Snezhinsk, RFYaTs-VNIITF Publ., 2017.

[2] Subbotin S.G. Dinamika udarostoykikh konstruktsiy [Dynamics of shock-resistant structures]. Snezhinsk, RFYaTs-VNIITF Publ., 2003.

[3] Mogilev V.A., Novikov S.A., Faykov Yu.I. Tekhnika vzryvnogo eksperimenta dlya issledovaniy mekhanicheskoy stoykosti konstruktsiy [An explosive experiment technique for studying mechanical resistance of structures]. Snezhinsk, RFYaTs-VNIIEF Publ., 2007.

[4] Saquib D.K., Sahoo P., Srivastava A.K., et al. Performance of BLC-200 cask under 9 m drop test. Procedia Eng., 2017, vol. 173, pp. 455--462. DOI: https://doi.org/10.1016/j.proeng.2016.12.063

[5] Sahoo D.K., Mane J.V., Srivastava P., et al. Numerical simulation and experimental drop testing of COCAM-120-an industrial radiography device. Procedia Eng., 2017, vol. 173, pp. 1918--1925. DOI: https://doi.org/10.1016/j.proeng.2016.12.252

[6] Liu X., Guo J., Bai Ch., et al. Drop test and crash simulation of a civil airplane fuselage section. Chinese J. Aeronaut., 2015, vol. 28, no. 2, pp. 447--456. DOI: https://doi.org/10.1016/j.cja.2015.01.007

[7] Yeh M.K., Huang T.H. Drop test and finite element analysis of test board. Procedia Eng., 2014, vol. 79, pp. 238--243. DOI: https://doi.org/10.1016/j.proeng.2014.06.337

[8] Grabilin A.O., Zubrenkov B.I., Pustobaev M.V., et al. Simulating shock loading modes on spacecraft hardware at actuation of division pyro devices. Voprosy elektromekhaniki. Trudy VNIIEM [Electromechanical Matters. VNIIEM Studies], 2014, vol. 138, no. 1, pp. 35--42 (in Russ.).

[9] Gokhfel’d D.A., Getsov L.B., Kononov K.M., et al. Mekhanicheskie svoystva staley i splavov pri nestatsionarnom nagruzhenii [Mechanical properties of steels and alloys under non-stationary loading]. Ekaterinburg, UrO RAS Publ., 1996.

[10] Normy rascheta na prochnost’ oborudovaniya i truboprovodov atomnykh energe-ticheskikh ustanovok (PNAE G-7-002--86) [Norms for stress calculation of equipment and pipelines for atomic power stations (PNAE G-7-002--86)]. Moscow, Energoizdat Publ., 1989.

[11] Zakharov Z.P., ed. Fiziko-mekhanicheskie svoystva konstruktsionnykh materialov i nekotorye sovremennye metody ikh issledovaniya [Physical-mechanical properties of constructional materials and some modern methods of their study]. Moscow, TsNIIatomminform Publ., 1982.

[12] Chekhov A.P., Sergeev A.M. Spravochnik po betonam i rastvoram [Handbook on concrete and mortar]. Kiev, Budivel'nik Publ., 1972.

[13] Smith S.W. Tsifrovaya obrabotka signalov. Prakticheskoe rukovodstvo dlya inzhenerov i nauchnykh rabotnikov. Moscow, Dodeka-XXI Publ., 2012.

[14] Biderman V.L. Teoriya mekhanicheskikh kolebaniy [Theory of mechanical oscillations]. Moscow, Vysshaya shkola Publ., 1972.

[15] Timoshenko S.P., Goodier J.N. Teoriya uprugosti. Moscow, Nauka Publ., 1975.