|

Methods of Grasp Quality Evaluation

Authors: Leskov A.G., Bazhinova K.V., Seliverstova E.V. Published: 26.05.2017
Published in issue: #3(114)/2017  

DOI: 10.18698/0236-3941-2017-3-122-139

 
Category: Mechanical Engineering and Machine Science | Chapter: Robots, Mechatronics, and Robotic Systems  
Keywords: automatic grasping, grasp properties, grasp quality, quality measure, analytical grasp evaluation, robotic gripper

This paper considers the problem of choosing the suitable method for grasping objects. As the grasp must have such properties as the disturbance resistance, dexterity, equilibrium and stability, the selection of the appropriate grasp method is based on comparison of quantitative evaluation of quality measures, associated with these properties. The paper presents the classification of quality measures, as well as the review of the most common performance criteria and methods of their computation. Moreover, we developed an algorithm to evaluate quality measures for an arbitrary grasp. We give the calculation data of the considered criteria and their analysis.

References

[1] Siciliano B., Khatib O. Handbook of robotics. Berlin, Springer, 2008. 1611 p.

[2] Rimon E., Burdick J. On force and form closure for multiple finger grasps. Proc. IEEE Int. Conf. on Robotics and Automation. 1996, vol. 2, pp. 1795-1800. DOI: 10.1109/ROBOT.1996.506972 Available at: http://ieeexplore.ieee.org/document/506972

[3] Shimoga K. Robot grasp synthesis algorithms: a survey. Int. Journal of Robotics Research, 1996, vol. 15, no. 3, pp. 230-266. DOI: 10.1177/027836499601500302 Available at: http://journals.sagepub.com/doi/abs/10.1177/027836499601500302

[4] Liu G., Xu J., Li Z. On geometric algorithms for real-time grasping force optimization. IEEE Transactions on Control Systems Technology, 2004, vol. 12, no. 6, pp. 843-859. DOI: 10.1109/TCST.2004.833630 Available at: http://ieeexplore.ieee.org/document/1347172

[5] Bruyninckx H., Demey S., Kumar V. Generalized stability of compliant grasps. Proc. IEEE Int. Conf. on Robotics and Automation. 1998, vol. 3, pp. 2396-2402. DOI: 10.1109/ROBOT.1998.680699 Available at: http://ieeexplore.ieee.org/document/680699/

[6] Roa M.A., Suarez R. Grasp quality measures: review and performance. Auton Robots, 2015, vol. 38, no. 1, pp. 65-88. DOI: 10.1007/s10514-014-9402-3 Available at: http://link.springer.com/article/10.1007/s10514-014-9402-3

[7] Leon B., Morales A., Sancho-Bru J. From robot to human grasping simulation. Springer International Publishing, 2014. 261 p.

[8] Li Z., Sastry S. Task-oriented optimal grasping by multifingered robotic hands. IEEE Journal of Robotics and Automation, 1987, vol. 4, pp. 389-394. DOI: 10.1109/ROBOT.1987.1087852 Available at: http://ieeexplore.ieee.org/document/1087852/

[9] Kim B., Oh S., Yi B., Suh I. Optimal grasping based on non-dimensionalized performance indices. Proc. IEEE/RSJInt. Conf. on Int.Robots and Systems. 2001, vol. 2, pp. 949-956. DOI: 10.1109/IROS.2001.976291 Available at: http://ieeexplore.ieee.org/document/976291

[10] Park Y.C., Starr G.P. Grasp synthesis of polygonal objects using a three-fingered robot hand. Int. Journal of Robotics Research, 1992, vol. 11, no. 3, pp. 163-184. DOI: 10.1177/027836499201100301 Available at: http://journals.sagepub.com/doi/abs/10.1177/027836499201100301

[11] Mirtich B., Canny J. Easily computable optimum grasps in 2D and 3D. Proc. IEEE Int. Conf. on Robotics and Automation-ICRA. 1994, vol. 1, pp. 739-747. DOI: 10.1109/ROBOT.1994.351399 Available at: http://ieeexplore.ieee.org/document/351399

[12] Chinellato E., Fisher R., Morales A., Pobil A. Ranking planar grasp configurations for a three-finger hand. Proc. IEEE Int. Conf. on Robotics and Automation, 2003, vol. 1, pp. 1133-1138. DOI: 10.1109/ROBOT.2003.1241745 Available at: http://ieeexplore.ieee.org/document/1241745

[13] Chinellato E., Morales A., Fisher R., Pobil A. Visual quality measures for characterizing planar robot grasps. IEEE Transactions of Systems, Man and Cybernetics: Part C, 2005, vol. 35, no. 1, pp. 30-41. DOI: 10.1109/TSMCC.2004.840061 Available at: http://ieeexplore.ieee.org/document/1386451/

[14] Ding D., Liu Y., Wang S. Computation of 3-D form-closure grasps. IEEE Transactions on Robotics and Automation, 2001, vol. 17, no. 4, pp. 515-522. DOI: 10.1109/70.954765 Available at: http://ieeexplore.ieee.org/document/954765

[15] Nguyen V. Constructing force-closure grasps. Int. Journal of Robotics Research, 1988, vol. 7, no. 3, pp. 3-16. DOI: 10.1177/027836498800700301 Available at: http://journals.sagepub.com/doi/abs/10.1177/027836498800700301

[16] Ponce J., Faverjon B. On computing three-finger force-closure grasps of polygonal objects. IEEE Transactions on Robotics and Automation, 1995, vol. 11, no. 6, pp. 868-881. DOI: 10.1109/70.478433 Available at: http://ieeexplore.ieee.org/document/478433

[17] Pollard N. Synthesizing grasps from generalized prototypes. Proc. IEEE Int. Conf. on Robotics and Automation. 1996, vol. 3, pp. 2124-2130.

[18] Ferrari C., Canny J. Planning optimal grasps. Proc. IEEE Int. Conf. on Robotics and Automation. 1992, pp. 2290-2295.

[19] Miller A., Allen P. Examples of 3D grasp quality computations. Proc. IEEE Int. Conf. on Robotics and Automation. 1999, pp. 1240-1246. DOI: 10.1109/ROBOT.1996.506184 Available at: http://ieeexplore.ieee.org/document/506184

[20] Chinellato E. Robust strategies for selecting vision-based planar grasps of unknown objects with a three-finger hand. Master of Science Thesis. University of Edinburgh, Division of Informatics, School of Artificial Intelligence, 2002. 99 p.

[21] Klein C., Blaho B. Dexterity measures for the design and control of kinematically redundant manipulators. Int. Journal of Robotics Research, 1987, vol. 6, pp. 72-83. DOI: 10.1177/027836498700600206 Available at: http://journals.sagepub.com/doi/abs/10.1177/027836498700600206

[22] Yoshikawa T. Manipulability of robotic mechanisms. Int. Journal of Robotics Research, 1985, vol. 4, no. 2, pp. 3-9. DOI: 10.1177/027836498500400201 Available at: http://journals.sagepub.com/doi/abs/10.1177/027836498500400201

[23] Salisbury J., Craig J. Articulated hands: Force control and kinematic issues. Int. Journal of Robotics Research, 1982, vol. 1, no. 1, pp. 4-17. DOI: 10.1177/027836498200100102 Available at: http://journals.sagepub.com/doi/abs/10.1177/027836498200100102

[24] Balasubramanian R., Xu L., Brook P.D., Smith J.R., Matsuoka Y. Human-guided grasp measures improve grasp robustness on physical robot. Proc. IEEE Int. Conf. on Robotics and Automation. 2010, pp. 2294-2301. DOI: 10.1109/R0B0T.2010.5509855 Available at: http://ieeexplore.ieee.org/document/5509855