|

Comparative Analysis of Cryosurgical System Designs

Authors: Ryabinina M.M., Krotov A.S., Krylov V.I., Andreev N.A. Published: 02.08.2018
Published in issue: #4(121)/2018  

DOI: 10.18698/0236-3941-2018-4-116-129

 
Category: Power, Metallurgic and Chemical Engineering | Chapter: Machines and Devices, Processes of Refrigeration and Cryogenic Engineering, Air Conditioning  
Keywords: сryosurgical system, cryoprobe, micro-scale heat exchanger, cooling capacity, refrigerant, cryosurgical system

The study compares the features of contemporary cryosurgical systems used in transcutaneous surgery, analyses work cycle diagrams, and specifies advantages and disadvantages. We describe the principles of operation and design of one of the minimally invasive probes used in cryosurgery. We consider the cell death mechanism in cryodestruction. We propose a promising direction for upgrading cryosurgical systems, that is, using a closed work cycle employing a multi-component refrigerant blend, which has no analogues in the field today. We compared work cycle characteristics for running on various refrigerants and selected a multi-component refrigerant that ensures the best cycle parameters. The optimum choice is the one corresponding to minimum compression work and maximum thermodynamic degree of perfection in a cycle

References

[1] Shakurov A.V., Pushkarev A.V., Pushkarev V.A., Tsyganov D.I. Prerequisites for developing new generation cryosurgical devices (review). STM [Modern Technologies in Medicine], 2017, vol. 9, no. 2, pp. 178–189 (in Russ.). DOI: 10.17691/stm2017.9.2.23

[2] Chua K.J. Computer simulations on multiprobe freezing of irregularly shaped tumors. Computers in Biology and Medicine, 2011, vol. 41, no. 7, pp. 493–505. DOI: 10.1016/j.compbiomed.2011.04.015

[3] Zhao F., Chen Zh.Q., Shi M.H. Numerical study on freezing-thawing phase change heat transfer in biological tissue embedded with two cryoprobes. Journal of Central South University of Technology, 2009, no. 16, pp. 326–331. DOI: 10.1007/s11771-018-3742-7

[4] Deng Z., Liu J. Numerical simulation of 3-D freezing and heating problems for combined cryosurgery and hyperthermia therapy. Numerical Heat Transfer, Part A: Applications, 2004, vol. 46, no. 10, pp. 587–611. DOI: 10.1080/10407780490487740

[5] Vasilev A.O., Govorov A.V., Pushkarev A.V., Tsyganov D.I., Shakurov A.V. Thermophysical modeling of cryosurgery with the case study of prostate cancer. Tekhnologii zhivykh system [Journal Technologies of Living Systems], 2014, no. 11, pp. 47–53 (in Russ.).

[6] Morozova N.V., Ponomarev D.E., Pushkarev A.V., Tsyganov D.I. Thermophysical modeling application in liver cryosurgery. Rossiyskiy onkologicheskiy zhurnal [Russian Journal of Oncology], 2014, no. 4, pp. 37 (in Russ.).

[7] Pushkarev A.V., Morozova N.V., Tsyganov D.I. [Thermophysical modeling of processes in biological tissue as a tool for preoperative planning robotic cryosurgery]. Mezhd. nauch.-praktich. konf. «Biotekhnologii v kompleksnom razvitii regionov [Int. Sci.-Pract. Conf. "Biotechnologies in complex development of regions"]. Moscow, OOO «Ekspo-Biokhim-Тekhnologii» Publ., 2016. 70 p.

[8] Zherdev A.A., Shakurov A.V., Pushkarev A.V., Burkov I.A., et al. Measurement of characteristics of cryoprobes under different operation modes. Biomedical Engineering, 2017, vol. 50, no. 5, pp. 344–347. DOI: 10.1007/s10527-017-9652-4

[9] Zherdev A.A., Tsyganov D.I., Shakurov A.V., et al. Experimental study of thermal characteristics of minimally invasive cryoprobe for different values of cooling power. Meditsinskaya tekhnika, 2017, no. 5 (305), pp. 15–18 (in Russ.).

[10] Pushkarev A.V., Tsyganov D.I., Shakurov A.V., Shafranov V.V. An experimental study of a miniature cryodestructor in pediatric surgery. Detskaya khirurgiya [Russian Journal of Pediatric Surgery], 2016, vol. 20, no. 5, pp. 259–263 (in Russ.).

[11] Zherdev A.A.,Tsyganov D.I., Pushkarev A.V., et al. Investigation of the effect of heating catheter on freezing regions during prostate cryoablation. Vysokotekhnologicheskaya meditsina, 2017, vol. 4, no. 3, pp. 64.

[12] Tsyganov D.I. Teoreticheskie i eksperimentalnye osnovy sozdaniya kriokhirurgicheskoy apparatury i meditsinskikh tekhnologiy ee primeneniya. Diss. dok. tekh. nauk [Theoretical and experimental basis for creating cryosurgery technique and medical technologies for its application. Doc. tech. sci. diss.]. Moscow, VNIIIIMT Publ., 1994. 315 p.

[13] Gage A.A., Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology, 1998, vol. 37, no. 3, pp. 171–186. DOI: 10.1006/cryo.1998.2115

[14] Pushkarev A.V., Vasilev A.O., Sheptunov S.A., Tsyganov D.I. Research of biological tissues injury factors for cryosurgery equipment design. Izvestiya VUZov. Povolzhskiy region. Meditsinskie nauki [University proceedings. Volga region. Medical sciences], 2016, no. 4 (40), pp. 122–134 (in Russ.).

[15] Seifert J.K., Morris D.L. Indicators for recurrence following cryotherapy for hepatic metastases from colorectal cancer. British Journal of Surgery, 1999, vol. 86, no. 2, pp. 234–240. DOI: 10.1046/j.1365-2168.1999.00995.x

[16] Gibo Y., Desmet V. Study of the usefulness and the limits of ultrasonic diagnostic criteria for diagnosis of liver tumors. Acta Gastroenterologica Belgica, 1992, no. 7, pp. 405–414.

[17] Shafranov V.V., Tsyganov D.I., Polyaev Yu.A. Capabilities of cryosurgery. Annaly khirurgii [Annals of Surgery], 1996, no. 4, pp. 47–52 (in Russ.).

[18] Tsyganov D.I. Teplofizicheskie aspekty kriokhirurgii [Thermal-physical fundamentals of cryosurgery]. Moscow, Ros. med. akad. poslediplom. obrazovaniya Publ., 2005. 180 p.

[19] Pushkarev A.V. Teoreticheskoe i eksperimentalnoe issledovanie teploobmena pri mnogozondovom nizkotemperaturnom vozdeystvii na biotkani. Diss. kand. tekh. nauk [Theoretical and experimental study of heat exchange in case of multiple low-temperature impact on bio-tissue]. Moscow, 2017. 178 p.

[20] Tsyganov D.I., Pushkarev A.V., Morozova N.V. [The study of the possibility of use the invasive thermosensors for temperature control in biological tissue]. Mezhd. nauch.-praktich. konf. «Biotekhnologiya i kachestvo zhizni» [Int. Sci.-Pract. Conf, "Biotechnology and Quality of Life"]. Moscow, ZAO «Ekspo-Biokhim-Tekhnologii» Publ., 2014, pp. 185–186.

[21] Arkharov A.M., Butkevich I.K. Mashiny nizkotemperaturnoy tekhniki. Kriogennye mashiny i instrument [Low-temperature technique machines. Cryo-machines and tools]. Moscow, Bauman MSTU Publ., 2015. 531 p.

[22] Longsworth R.C. Cryoprobe. Patent US 5452582A. 1994.

[23] Mikus P.W., Kelly G.L., Brady R.K. Cryoprobe. Patent US 5800487A. 1998.

[24] Dobak J.D., Ghaerzadeh K., Yu X. Cryosurgical probe with sheath. Patent US 6475212B2. 2002.

[25] Zvuloni R., Schatzberger S. Multiple cryoprobe apparatus and method. Patent US 6706037B2. 2000.

[26] Govorov A.V., Vasilev A.O., Pushkarev A.V., Tsyganov D.I., Pushkar D.Yu. Cryoablation of the prostate in patients with locally advanced prostate cancer: clinical and experimental study. Kachestvo. Innovatsii. Obrazovanie, 2016, vol. 2, no. 2, pp. 33–38 (in Russ.).

[27] Yakovlev V.I., Bychkov E.G., Makarov B.A., Samokhvalov Ya.V. Theoretical and experimental study results of refrigerator of ultra-low-temperature medical deep-freezer for providing cryodestruction and longterm storage of biomedical onjects. Problemy razvitiya korabelnogo vooruzheniya i sudovogo radioelektronnogo oborudovaniya, 2016, no. 3 (8), pp. 51–59.

[28] Lavrenchenko G.K. Creation of microcryogenic systems on multicomponent working bodies realized a modify Kleemenkos cycle. Tekhnicheskie gazy [Industrial Gases], 2009, no. 5, pp. 21–25 (in Russ.).

[29] Zhernov A.A., Keshishev N.G., Shaderkin I.A., Koryakin A.V. Prostate cancer cryotherapy. Eksperimentalnaya i klinicheskaya urologiya [Experimental and Clinical Urology], 2010, no. 2, pp. 72–77 (in. Russ.).