|

Thermodynamic Property Calculation in Vapor-Liquid Equilibrium for Multicomponent Mixtures using Highly Accurate Helmholtz Free Energy Equation of State

Authors: Luo T., Chirkov A.Yu. Published: 08.09.2021
Published in issue: #3(138)/2021  

DOI: 10.18698/0236-3941-2021-3-108-121

 
Category: Power, Metallurgic and Chemical Engineering | Chapter: Machines and Devices, Processes of Refrigeration and Cryogenic Engineering, Air Conditioning  
Keywords: vapor-liquid equilibrium, stability analysis, tangent plane criterion, Helmholtz free energy equation of state, PR-equation of state

Thermodynamic properties of multicomponent mixtures in phase equilibrium were studied. The tangent plane criterion was used for stability analysis, and the Gibbs energy minimization was employed for phase equilibrium calculation when the successive substitution didn't converge. Thermodynamic properties of a 12-component natural gas mixture in vapor-liquid equilibrium were calculated with highly accurate Helmholtz free energy equation of state GERG--2008, simplified GERG--2008 and common cubic Peng --- Robinson (PR) equation of state. Results show that in vapor-liquid equilibrium, GERG--2008 has high accuracy and works better than simplified GERG--2008 and PR-equation of state. Simplified GERG--2008 and PR-equation of state both work unsatisfactorily in vapor-liquid equilibrium calculation, especially near the saturation zone. The deviation function in GERG--2008 can significantly affect the accuracy of GERG--2008 when calculating thermodynamic properties of mixtures in vapor-liquid equilibrium

References

[1] Michelsen M.L., Mollerup J.M. Thermodynamic models. Fundamentals & сomputational aspects. Denmark, Holte, Tie-Line Publications, 2004.

[2] Baker L.E., Pierce A.C., Luks K.D. Gibbs energy analysis of phase equilibria. SPE J., 1982, vol. 22, no. 5, pp. 731--742. DOI: https://doi.org/10.2118/9806-PA

[3] Michelsen M.L. The isothermal flash problem. Part I. Stability. Fluid Phase Equilib., 1982, vol. 9, no. 1, pp. 1--19. DOI: https://doi.org/10.1016/0378-3812(82)85001-2

[4] Michelsen M.L. The isothermal flash problem. Part I. Phase-split calculation. Fluid Phase Equilib., 1982, vol. 9, no. 1, pp. 21--40. DOI: https://doi.org/10.1016/0378-3812(82)85002-4

[5] Orbach O., Crowe C.M. Convergence promotion in the simulation of chemical processes with recycle --- the Dominant Eigenvalue Method. Can. J. Chem. Eng., 1971, vol. 49, no. 4, pp. 509--513. DOI: https://doi.org/10.1002/cjce.5450490414

[6] Crowe C.M., Nishio M. Convergence promotion in the simulation of chemical processes --- the General Dominant Eigenvalue Method. AIChE J., 1975, vol. 21, no. 3, pp. 528--533. DOI: https://doi.org/10.1002/aic.690210314

[7] Peng D.Y., Robinson D.B. A new two-constant equation of state. Ind. Eng. Chem. Fundamen., 1976, vol. 15, no. 1, pp. 59--64. DOI: https://doi.org/10.1021/i160057a011

[8] Nishiumi H., Arai T., Takeuchi K. Generalization of the binary interaction parameter of the Peng --- Robinson equation of state by component family. Fluid Phase Equilib., 1988, vol. 42, pp. 43--62. DOI: https://doi.org/10.1016/0378-3812(88)80049-9

[9] Kunz O., Wagner W. The GERG--2008 wide-range equation of state for natural gases and other mixtures: an Expansion of GERG--2004. J. Chem. Eng. Data, 2012, vol. 57, no. 11, pp. 3032--3091. DOI: https://doi.org/10.1021/je300655b

[10] Mollerup J.M., Michelsen M.L. Calculation of thermodynamic equilibrium properties. Fluid Phase Equilib., 1992, vol. 74, pp. 1--15. DOI: https://doi.org/10.1016/0378-3812(92)85049-E

[11] Kunz O., Klimeck R., Wagner W., et al. The GERG--2004 wide-range equation of state for natural gases and other mixtures. Dusseldorf, VDI, 2007.

[12] Tester J.W., Modell M. Thermodynamics and its applications. Cambridge, Pearson, 1997.

[13] Dennis J.E., Schnabel R.B. Numerical methods for unconstrained optimization and nonlinear equations. Philadelphia, SIAM, 1996.

[14] Luo T., Chirkov A.Yu. Phase equilibrium modelling for multi-component mixtures using highly accurate Helmholtz energy equation of state. IJESMS, 2020, vol. 11, no. 4, pp. 138--146. DOI: https://doi.org/10.1504/IJESMS.2020.111265

[15] Luo T., Chirkov A.Yu. Phase envelope construction for mixtures using a highly accurate Helmholtz energy equation of state. Vestnik TyumGU. Fizikomatematicheskoe modelirovanie. Neft’, gaz, energetika [Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy], 2020, vol. 6, no. 4, pp. 8--27 (in Russ.). DOI: https://doi.org/10.21684/2411-7978-2020-6-4-8-27

[16] Gernert J., Jager A., Span R. Calculation of phase equilibria for multi-component mixtures using highly accurate Helmholtz energy equations of state. Fluid Phase Equilib., 2014, vol. 375, pp. 209--218. DOI: https://doi.org/10.1016/j.fluid.2014.05.012