|

Research of Thermal-Hydraulic Processes in Porous Net-Shaped Matrix for Rotary Regenerator

Authors: Kostyukov A.V., Makarov A.R., Merzlikin V.G. Published: 14.02.2017
Published in issue: #1(112)/2017  

DOI: 10.18698/0236-3941-2017-1-129-140

 
Category: Power Engineering | Chapter: Hydraulic Machines and Hydropneumatic units  
Keywords: microturbine, heat-exchanger, porous-mesh matrix, heat transfer

This study focuses on physical and mathematical simulation of thermohydraulic processes in porous-mesh matrix consisting of 10 layers of metal mesh used in the heat transfer elements of rotary heat exchangers. We obtained the dependences descrybing the heating and cooling processes in porous-mesh matrix. To test the received dependences, we calculated the rotary heat  exchanger effectiveness of the transport microturbine with the capacity of 270 kW by mathematical simulation of thermohydraulic processes in porous-mesh matrix. The results of calculating the heat exchanger effectiveness with the refined temperature dependences of Colborne factor showed good agreement with the experimental data in the range of 1.5%.

References

[1] Krass M.S. Electric-power industry in the Russian economy. EKO [ECO], 2012, no. 7, pp. 136-150.

[2] Otchet o funktsionirovanii EES Rossii v 2015 godu [Report on the functioning of unified electric power system (UEPS) of Russia in 2015]. Sistemnyy operator EES: web-site. Available at: http://soups.ru/fileadmin/files/company/reports/disclosure/2016/ups_rep2015.pdf (accessed: 04.04.2016).

[3] Borozdina O.Yu., Eliseeva I.I., Mertins K., Rittigkhauzen Kh. National strategies for development of nuclear energy in Russia and Germany. Finansy i biznes [Finance and Business], 2012, no. 3, pp. 30-39 (in Russ.).

[4] BP statistical review of world energy 2015. BP global: website. Available at: http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed: 04.04.2016).

[5] Capstone Turbine Corporation (CPST). Available at: https://www.capstoneturbine.com/ (accessed: 04.04.2016).

[6] Combined heat and power systems technology development and demonstration 370 kW high efficiency microturbine. SciTech Connect: website. DOI: 10.2172/ 1224801 Available at: http://www.osti.gov/scitech/biblio/1224801/ (accessed: 05.05.2016).

[7] Elliott Group. Available at: http://www.elliott-turbo.com (accessed 04.04.2016).

[8] Heidari-Kaydan A., Hajidavallo E. Three-dimensional simulation of rotary air preheater in steam power plant. Applied Thermal Engineering, 2014, vol. 73, no. 1, pp. 399-407. DOI: 10.1016/j.applthermaleng.2014.08.013 Available at: http://www.sciencedirect.com/science/article/pii/S1359431114006759

[9] Turbec S.P.A. Available at: http://www.turbec.com (accessed: 04.04.2016).

[10] Mioralli P.C., Ganzarolli M.M. Thermal analysis of a rotary regenerator with fixed pressure drop or fixed pumping power. Applied Thermal Engineering, 2013, vol. 52, no. 1, pp. 187-197. DOI: 10.1016/j.applthermaleng.2012.11.030 Available at: http://www.sciencedirect.com/science/article/pii/S135943111200782X

[11] Wilson D.G., Korakianitis T.P. The design of high-efficiency turbomachinery and gas turbines. Upper Saddle River: Prentice-Hall, 1998.

[12] Wilson D.G., Pfahnl A.C. A look at the automotive-turbine regenerator system and proposals to improve performance and reduce cost. SAE Technical Paper 970237, 1997. DOI: 10.4271/970237 Available at: http://papers.sae.org/970237

[13] Wilson D.G. The basis for the prediction of high thermal efficiency in WTPI gas-turbine engines. 2002. 8 p. Available at: http://www.readbag.com/wilsonsolarpower-files-efficiency-basis-paper (accessed: 04.05.2016).

[14] Alekseev R.A., Kostyukov A.V., Kosach L.A. Investigation of the heat transfer process in a mesh matrix of a rotary heat exchanger. Izvestiya MGTU "MAMI", 2012, no. 2 (14), pp. 168-173 (in Russ.).

[15] Kostyukov A., Makarov A., Alexeev R., Merzlikin V. The structured rotor-type heat exchange for microturbines. FISITA 2012 World Automotive congress. 27th - 30th November 2012. "Proceedings and Abstracts". Paper Reference Number F2012-A07-025. Beijing, China. 2012. P. 78-79.

[16] Kays W.M., London A.L. Compact heat exchangers. New York. 1964. 272 p.

[17] Plotnikov D.A. Razrabotka i issledovanie diskovykh sektsionnykh avtomobirnykh gazoturbinnykh dvigateley: dis. kand. tekhn. nauk [Development and research of the structural rotary regenerators of gas turbine engine: kand. tech. sci. diss.]. Moscow, MAMI Publ., 1981. 151 p.

[18] Eliseev S.Yu. Teoreticheskoe obosnovanie i realizatsiya metodov uluchsheniya kharakteristik transportnykh regenerativnykh gazoturbinnykh dvigateley: dis. kand. tekhn. nauk [Theoretical basis and implementation methods to improve characteristics of transport regenerative gas turbine engines: kand. tech. sci. diss.]. Moscow, MAMI Publ., 2005. 133 p.

[19] Wu Z., Melnik R.V.N., Borup F. Model-based analysis and simulation of regenerative heat wheel. Energy and Building, 2006, vol. 38, no. 5, pp. 502-514. DOI: 10.1016/j.enbuild.2005.08.009 Available at: http://www.sciencedirect.com/science/article/pii/S0378778805001714

[20] Wei X.J., Joshi Y.K., Ligrani P.M. Numerical simulation of laminar flow and heat transfer inside a microchannel with one dimpled surface. J. of Electronic Packaging, 2007, vol. 129, no. 1, pp. 63-70. DOI: 10.1115/1.2429711 Available at: http://electronicpackaging.asmedigitalcollection.asme.org/article.aspx?articleid=1408612