|

Parametric Synthesis of a Controller for Stabilising Rotor Angular Velocity in a Steam Turbine for an Autonomous Power Supply System

Authors: Kornyushin Yu.P., Akimenko D.A., Kornyushin P.Yu. Published: 14.06.2018
Published in issue: #3(120)/2018  

DOI: 10.18698/0236-3941-2018-3-111-123

 
Category: Power Engineering | Chapter: Turbomachines and Combination Turbine Plants  
Keywords: turbine, control system, angular velocity, parameters, synthesis

The study deals with the issues of computing controller parameters for stabilising rotor angular velocity in a steam turbine when the turbine set operates for a self-contained power system (autonomous load). To achieve this, we introduce a simple PID controller into the angular velocity sensor circuit found in a regular control system designed for high-power electric grids. Changing the parameters of this controller makes it possible to return to the previous system. Controller parameters should be computed so as to ensure that those processes that are closest to the ones desired take place both at the output (sustaining the preset pattern of variation in the turbine rotor rotation frequency) and in the main turbine components. We propose an algorithm for calculating controller parameters that uses methods of numerical integration of differential equations as the basis for the iterative process employed in the parametric synthesis. We replace phase variables by reference variables (which are known) in the numerical integration scheme used for equations forming the mathematical model of the turbine with an extra controller; as a result, at every step of formal integration there appears a system of algebraic equations in the parameters sought. These controller parameters form the solution for the system. We supply the results comparing the operation of the finetuned system to a reference process, as well as plots showing how the controller parameters sought vary in the process of tuning them to values close to optimum

The study was supported by RFBR and the Government of the Kaluga Region (grant no. 16-41-4007)

References

[1] Rasporyazhenie Pravitelstva RF ot 13 noyabrya 2009 g. Nо. 1715-r "Energeticheskaya strategiya Rossii na period do 2030 goda" [RF Government Resolution of 13.11.2009. No. 1715-r "RF energy strategy in period before 2030"]. Available at: http://energoeducation.ru/wp-content/uploads/2015/11/LAW94054_0_20151002 _142857_54007.pdf (accessed: 16.09.2017).

[2] Voropay N.I., Podkovalnikov C.B., Stennikov V.A., Trufanov V.V. Innovation directions of electric-power industry development in Russia. Elektro. Elektrotekhnika, elektroenergetika, elektrotekhnicheskaya promyshlennost [Elektro. Elektrotekhnika, elektroenergetika, elektrotekhnicheskaya promyshlennost], 2011, no. 4, pp. 13–18 (in Russ.).

[3] Dursun I., Karaosmanoglu F., Umurkan N. Reconfiguration of actual distribution network with optimum power flow for loss reduction. International Journal of Electronics and Electrical Engineering, 2016, vol. 4, no. 1, pp. 56–60 (in Russ.). DOI: 10.18178/ijeee.4.1.56-60 Available at: http://www.ijeee.net/uploadfile/2015/0911/20150911053026917.pdf

[4] Politika innovatsionnogo razvitiya energosberezheniya i povysheniya energeticheskoy effektivnosti OAO "Rosseti" (Utverzhdeno Sovetom direktorov OAO "Rosseti", protokol № 138 ot 23.10.2014) [Innovation development politics of energy saving and efficiency raising of OAO "Rosseti" (Proved by board of OAO "Rosseti", minutes no. 138 of 23.10.2014)]. Available at: http://www.rosseti.ru/investment/policy_innovation_development/doc/policy.pdf (accessed: 17.09.2017).

[5] GOST 32144–2013. Elektricheskaya energiya. Sovmestimost tekhnicheskikh sredstv elektromagnitnaya. Normy kachestva elektricheskoy energii v sistemakh elektrosnabzheniya obshchego naznacheniya [State standard 32144–2013. Electric energy. Electromagnetic compatibility of technical equipment. Power quality limits in the public power supply systems]. Moscow, Standartinform Publ., 2014. 19 p.

[6] Kiryukhin V.I., Taranenko N.M., Ogurtsova E.P. Parovye turbiny maloy moshchnosti KTZ [Low-power steam turbines of KTZ]. Moscow, Energoatomizdat Publ., 1987. 216 p.

[7] Kornyushin Yu.P., Melnikov D.V., Egupov N.D., Kornyushin P.Yu. Synthesis of an additional controller for stabilization of angular velocity of the steam turbine rotor. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2015, no. 5, pp. 100–112 (in Russ.). DOI: 10.18698/1812-3368-2015-5-100-112

[8] GOST R 55890–2013. Edinaya energeticheskaya sistema i izolirovanno rabotayushchie energosistemy. Operativno-dispetcherskoe upravlenie. Regulirovanie chastoty i peretokov aktivnoy moshchnosti. Normy i trebovaniya [State standard R 55890–2013. United power system and isolated power systems. Operative-dispatch management. Frequency control and control of active power. Norms and requirements]. Moscow, Standartinform Publ., 2014. 18 p.

[9] Markov V.A., Shatrov V.I. Promising directions for improving automated control and adjustment systems in thermal power plants. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2017, no. 4, pp. 121–141 (in Russ.). DOI: 10.18698/0236-3941-2017-4-121-141

[10] Kalashnikov A.A. Dinamika regulirovaniya turbin [Turbines adjustion dynamics]. Moscow, Energoatomizdat Publ., 1999. 328 p.

[11] Stennikov V.A., Voropay N.I. Tsentralizovannaya i raspredelennaya generatsiya — ne alternativa, a integratsiya [Centralized and distributed generation — not alternative but integration]. ISEM SO RAN: website. Available at: http://www.energystrategy.ru/projects/Energy_21/4-2.pdf (accessed: 14.09.2017).