﻿ Algorithm for Determining Optimum Runner Number in the Blading Section of a Turbomolecular Pump | HERALD OF THE BAUMAN MOSCOW STATE STATE TECHNICAL UNIVERSITY
|

# Algorithm for Determining Optimum Runner Number in the Blading Section of a Turbomolecular Pump

 Authors: Demikhov K.E., Gordeeva U.S., Ochkov A.A. Published: 20.02.2020 Published in issue: #1(130)/2020 Category: Power Engineering | Chapter: Vacuum, Compressor Technology, and Pneumatic Systems Keywords: turbomolecular high vacuum pump, blading section, runner, optimisation, pumping speed

The paper considers developing an algorithm for determining the optimum runner number in the blading section of a turbomolecular pump. Such pumps are built into chromatograph mass spectrometers for ensuring vacuum production in the chamber. Turbo-molecular pumps boast a number of advantages over other pumping solutions since it is possible to arrive at the required pumping parameters by means of selecting the optimum blading section configuration. In order to solve this problem, we present an algorithm for calculating the optimum runner number in the blading section of a turbomolecular pump, ensuring the pumping characteristics required: pumping speed and pressure ratio. The algorithm is based on well-known analytical expressions describing processes taking place in pumps of this type, which means it is highly computationally efficient. We determined the respective blading section parameter values, selected the values of empirical coefficients and plotted the pumping performance for the first two runners. The algorithm developed may be used to optimise mass and dimensions of turbomolecular pumps, which could significantly expand their use

## References

[1] Demikhov K.E. Current trends of high-vacuum pumps. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2014, no. 5, pp. 3--11 (in Russ.).

[2] Demikhov K.E. Basic principles of selecting optimality criteria in designing high-vacuum mechanical pumps. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2015, no. 4, pp. 76--85 (in Russ.). DOI: 10.18698/0236-3941-2015-4-76-85

[3] Demikhov K.E., Ochkov A.A. Software for turbomolecular vacuum pumps key parameters optimization. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2013, no. 5 (in Russ.). DOI: 10.18698/2308-6033-2013-5-750

[4] Demikhov K.E., Panfilov Yu.V., eds. Vakuumnaya tekhnika [Vacuum technique]. Moscow, Mashinostroenie Publ., 2009.

[5] Demikhov K.E., Nikulin N.K. Optimizatsiya vysokovakuumnykh mekhanicheskikh nasosov [Optimization of high-vacuum mechanical pumps]. Moscow, Bauman MSTU Publ., 2010.

[6] Demikhov K.E. Peculiarities of optimization of flow part of high-vacuum mechanical pumps in the wide pressure ran. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2012, no. 3, pp. 80--86 (in Russ.).

[7] Демихов К.Е., Очков А.А. Универсальная математическая модель процесса откачки газа молекулярным вакуумным насосом. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение, 2017, № 6, с. 134--143. DOI: 10.18698/0236-3941-2017-6-134-143

[8] Демихов К.Е., Очков А.А. Определение эффективного диапазона давлений газа на стороне всасывания турбомолекулярного вакуумного насоса. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение, 2016, № 5, с. 89--95. DOI: 10.18698/0236-3941-2016-5-89-95

[9] Li Y., Chen X., Guo W., et al. Accurate simulation of turbomolecular pumps with modified algorithm by 3D direct simulation Monte Carlo method. Vacuum, 2014, vol. 109, pp. 354--359. DOI: 10.1016/j.vacuum.2014.03.023

[10] Li Y., Chen X., Jia Y., et al. Numerical investigation of three turbomolecular pump models in the free molecular flow range. Vacuum, 2014, vol. 101, pp. 337--344. DOI: 10.1016/j.vacuum.2013.10.002

[11] Демихов К.Е., Очков А.А., Полежаев А. Влияние различных параметров проточной части цилиндрического молекулярного вакуумного насоса на его характеристики. Машины и установки: проектирование, разработка и эксплуатация, 2015, № 3, с. 1--8.

[12] Свичкарь Е.В., Никулин Н.К., Демихов К.Е. Методика расчета откачной характеристики высоковакуумной системы с турбомолекулярным вакуумным насосом. Омский научный вестник. Серия "Авиационно-ракетное и энергетическое машиностроение", 2018, т. 2, № 1, с. 65--71.

[13] Демихов К.Е., Очков А.А., Цакадзе Г.Т. Метод расчета оптимальных параметров комбинированного молекулярного вакуумного насоса. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение, 2017, № 5, с. 98--104. DOI: 10.18698/0236-3941-2017-5-98-104

[14] Han B., Huang Z., Le Y. Design aspects of a large scale turbomolecular pump with active magnetic bearings. Vacuum, 2017, vol. 142, pp. 96--105. DOI: 10.1016/j.vacuum.2016.12.010