|

Features of Initial Operation Phase for Film Nozzle with Gasifying of the Liquid Film

Authors: Kuznetsov A.V., Zelentsov V.V., Ivashov A.I., Bezdomnikov A.V. Published: 02.10.2014
Published in issue: #5(98)/2014  

DOI:

 
Category: Simulation of Processes  
Keywords: gasifying of the liquid film, gas-liquid medium humidity, nozzle, liquid jet

A mathematical model process of the forming and gasifying of the liquid film has been developed. The numerical simulation process of the disintegration of the liquid jet both directly on the rigid wall impact in a slot channel and at the subsequent exposure of air stream upon the forming liquid film is carried out. Performed experimental researches of this process have shown the accuracy of the developed mathematical model. In contrast to the known ones, the developed mathematical model allows to calculate the gas-liquid medium humidity and droplet distribution immediately within the nozzle cavity. Analysis of the results showed that during the establishment process of liquid flow within the film nozzles there is a collision of a liquid jet with the wall of the slotted channel. Then there is liquid flow ’s turn to the wall of the slotted channel contiguous to the slit nozzle, which leads to the destruction of the liquid jet and to the mechanism implementation of the high-frequency disintegration for the liquid jet in the initial stage. Calculation revealed that the dropping mechanism varies significantly at the gasifying of the liquid film. In this case the radial interference of liquid and gas jets occurs, which leads to the pressure space forming in this zone and, as a result, to incipient cavitation which significantly reinforce crushing mechanism of fluid.

References

[1] Lefebvre A.H. Gas Turbine Combustion. New York, McGraw Hill, 1983. 531 p. (Russ. Ed.: Lefevr A. Protsessy v kamerakh sgoraniya GTD. Moscow, Mir Publ., 1986. 556 p.).

[2] Afanas’ev V.V. Diagnostika i upravlenie ustoychivost’yu goreniya v kamerakh sgoraniya energeticheskikh ustanovok [Diagnosis and control of stability combustion in the combustion chambers of power-producing unit]. Moscow, Fizmatlit Publ., 2008. 436 p.

[3] Dobrovol’skiy M.V. Zhidkostnye raketnye dvigateli [Liquid-propellant rocket engines]. Moscow, Mashinostroenie Publ., 1968. 396 p.

[4] Pazhi D.G., Galustov V.S. Osnovy tekhniki raspylivaniya zhidkostey. Ser. Protsessy i apparaty khimicheskoy i neftekhimicheskoy tekhnologii [Basic techniques of spraying liquids. Ser. Processes and devices of chemical and petrochemical technology]. Moscow, "Khimik" Publ., 1984. 256 p.

[5] Deitch M.E., Filipov G.A. Gazodinamika dvukhfaznykh sred [Gas dynamics of two-phase media]. Moscow, Energiya Publ., 1968. 423 p.

[6] Stanyukovich K.P. Fizika vzryva [Explosion physics]. Moscow, Nauka Publ., 1975. 793 p.

[7] Kuznetsov A.V. Mathematical model of the interaction process of a single unsteady supersonic jet with moving obstacle of finite dimensions. Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh. [Russ. Aeronaut.], 1986, no. 1, pp. 27-29 (in Russ.).

[8] Platonov N.I., Semenov V.P., Dolgushina O.V. Hydrodynamics of polydisperse droplet flow in contact heat exchanger with film nozzles. Izv. Vyssh. Uchebn. Zaved., Probl. Energy. [Proc. Univ., Probl. Power Eng.], 2010, no. 1-2, pp. 27-32 (in Russ.).

[9] Kestenboym Kh.S., Chudov L.A. Tochechnyy vzryv. Metody rascheta. Tablitsy [Point explosion. Methods of calculation. Tables]. Moscow, Mashinostroenie Publ., 1974. 256 p.

[10] Andryushkin A.Yu. Formirovanie dispersnykh sistem sverkhzvukovym gazodinamicheskim raspyleniem [The formation of disperse systems by supersonic gas-dynamic spray]. SPb., Baltiyskiy Gos. Tekhnicheskiy Un., 2012. 400 p.

[11] Dyatlov I.N. Generalization of the results of fineness measurements of fuel atomization by mechanical and air-mechanical nozzles of centrifugal type. Tr. Kazan. Aviats. Inst. im. A.N. Tupoleva [Proc. Tupolev Kazan Aeron. Inst.], 1969, iss. 2, pp. 76-78 (in Russ.).

[12] Koeffitsienty poverkhnostnogo natyazheniya vody i anilina pri razlichnykh temperaturakh. Spravochnik. Fizika [Surface tension coef. of water and aniline at different temperatures. Handbook. Physics] (in Russ.). Available at: http://www.calc.ru/614.html (accessed 02.11.13).

[13] Nikol’skiy B.P., eds. Koeffitsienty dinamicheskoy i kinematicheskoy vyazkosti vody v zavisimosti ot temperatury i davleniya. Spravochnik khimika. Т. 1 [The coef. of dynamic and kinematic viscosity of the water depending on temperature and pressure. Handbook of chemist. Vol. 1]. Moscow-Leningrad, "Khimiya" Publ., 1982. 987 p.

[14] Aleksandrov A.A., Rivkin S.L. Termodinamicheskie svoystva vody i vodyanogo para. Spravochnik [Thermodynamic properties of water and steam. Handbook]. Moscow, Energoatomizdat Publ., 1984. 79 p.