Influence of Spacecraft Surface Spectral Radiation Characteristics on the Accuracy of Thermal Load Simulations in Infrared Simulators

Authors: Kolesnikov A.V., Paleshkin A.V., Pronina P.F., Shemetova E.V. Published: 01.04.2022
Published in issue: #1(140)/2022  

DOI: 10.18698/0236-3941-2022-1-40-54

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Strength and Thermal Modes  
Keywords: spacecraft, thermal tests, external thermal loads, spectral errors, infrared radiation sources


Relying on the data on the spectral absorptivity of materials and coatings used in space engineering, we estimated the level of possible errors in simulating the given external thermal loads on the spacecraft surface in infrared simulators with emitters of grey radiation characteristics. We used an assumption, which is introduced in the known methods for determining the optimal mode of the operation, that the outer spacecraft surface elements' spectral absorptivity does not depend on the wavelength of the incident radiation in the spectral bandwidth of the simulator. Findings of the research show that errors depend on the emitter temperature, especially for those coatings having spectral characteristics of radiation in the near infrared region of spectrum which cardinally differ from these characteristics in the middle and far regions of spectrum. For some coatings, the errors are unacceptably large. We arrived at a conclusion that it is necessary to adjust the known techniques to solve the problem of choosing the operating modes of infrared simulators. The technique is based on the iteration process of searching for a solution of the problem including repeated determination of radiation intensity vector of the simulator modules by minimization of the target function ψ with simultaneous specification, at each iteration, of coefficient values characterizing the absorptivity of the spacecraft outer surface elements with respect to radiation arriving from the simulator modules

The study was conducted as part of a government assignment by the Ministry of Education and Science of the Russian Federation (project no. FSFF-2020-0016)

Please cite this article in English as:

Kolesnikov A.V., Paleshkin A.V., Pronina P.F., et al. Influence of spacecraft surface spectral radiation characteristics on the accuracy of thermal load simulations in infrared simulators. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2022, no. 1 (140), pp. 40--54 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2022-1-40-54


[1] Chisabas R.S.S., Loureiro G., de Oliveira Lino C., et al. Development of a thermal-vacuum chamber for testing in small satellites. 47th ICES, 2017, art. ICES-2017-228.

[2] Kang S.J., Oh H.U. On-orbit thermal design and validation of 1 U standardized Cubesat of STEP cube lab. Int. J. Aerosp. Eng., 2016, vol. 2016, art. 4213189. DOI: https://doi.org/10.1155/2016/4213189

[3] Leite R., Li G., Vlassov V., et al. CBERS 3&4 TM thermal balance test results and satellite thermal mathematical model correlation. 40th Int. Conf. Environ. Syst., 2010, no. AIAA 2010-6224. DOI: https://doi.org/10.2514/6.2010-6224

[4] Semena N.P. Numerical simulation of thermal conditions of the Russian instrument complex ACS, integrated into European ExoMars spacecraft. Matematicheskoe mode-lirovanie i chislennye metody [Mathematical Modeling and Computational Methods], 2018, no. 1, pp. 55--69 (in Russ.).

[5] Dobritsa D.B., Ushakova A.A., Shabarchin A.F., et al. Modeling external thermal influence of infrared radiation sources during tests of rocket and space equipment in VK-600/300. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie [VESTNIK of Samara University. Aerospace and Mechanical Engineering], 2017, vol. 16, no. 3, pp. 27--38 (in Russ.). DOI: https://doi.org/10.18287/2541-7533-2017-16-3-27-38

[6] Eliseev V.N., Tovstonog V.A. Teploobmen i teplovye ispytaniya materialov i konstruktsiy aerokosmicheskoy tekhniki pri radiatsionnom nagreve [Heat transfer and thermal testing of aerospace materials and structures]. Moscow, Bauman MSTU Publ., 2014.

[7] Semena N.P. The use of scale models in ground tests reproducing heat transferin space. Thermophys. Aeromech., 2014, vol. 21, no. 1, pp. 45--55. DOI: https://doi.org/10.1134/S0869864314010053

[8] Kolesnikov A.V., Serbin V.I. Modelirovanie usloviy vneshnego teploobmena kosmicheskikh apparatov [Modelling of external heat exchange conditions for space-craft]. Moscow, Informatsiya-XXI vek Publ., 1997.

[9] Kolesnikov A.V., Paleshkin A.V., Mamedova K.I. Gradient methods for optimization of operating mode of external thermal loads simulator. Teplovye protsessy v tekhnike [Thermal Processes in Engineering], 2014, vol. 6, no. 11, pp. 522--528 (in Russ.).

[10] Kolesnikov A.V., Paleshkin A.V., Syzdykov Sh.O. Modeling external heat loads on the spacecraft in a thermal vacuum chamber. J. Eng. Phys. Thermophy., 2019, vol. 92, no. 4, pp. 965--970. DOI: https://doi.org/10.1007/s10891-019-02010-9

[11] Galeev A.G., Kolesnikov A.V., Paleshkin A.V., et al. Proektirovanie ispytatel’nykh stendov dlya teplovakuumnykh ispytaniy kosmicheskikh apparatov [Design of test benches for thermal vacuum tests on spacecraft]. Moscow, MAI Publ., 2015.

[12] Yu Y., Ming P., Zhou S. Numerical study on transient heat transfer of a quartz lamp heating system. Math. Probl. Eng., 2014, vol. 2014, art. 530476. DOI: https://doi.org/10.1155/2014/530476

[13] Wang J., Liu S., Pei Y. Infrared lamp array simulation technology used during satellite thermal testing. Int. J. Mechan., Aerosp., Industr., Mechatr. Manuf. Eng., 2010, vol. 4, no. 9. DOI: https://doi.org/10.5281/zenodo.1327642

[14] Howell J.R., Menguc M.P., Siegel R. Thermal radiation heat transfer. CRC Press, 2015.

[15] Kolesnikov A.V., Paleshkin A.V., Syzdykov Sh.O. Prospects for the use of halogen incandescent lamps to simulate conditions of external heat exchange of spacecraft. Teplovye protsessy v tekhnike [Thermal Processes in Engineering], 2018, vol. 10, no. 3-4, pp. 158--165 (in Russ.).

[16] Sheyndlin A.E., ed. Izluchatel’nye svoystva tverdykh materialov [Emission properties of solids]. Moscow, Energiya Publ., 1974.

[17] Minissale M., Pardanaud C., Bisson R., et al. The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study. J. Phys. D: Appl. Phys., 2017, vol. 50, no. 45, art. 455601. DOI: https://doi.org/10.1088/1361-6463/aa81f3

[18] Petrov G.I., ed. Modelirovanie teplovykh rezhimov kosmicheskogo apparata i okruzhayushchey ego sredy [Modeling of spacecraft thermal regimes and environment]. Moscow, Mashinostroenie Publ., 1971.