Technology of Magnetron Deposition of Nanosized High-Barrier Relative Oxygen Aluminium Oxide Coating on Roll Pet Film

Authors: Panchenko V.P., Dyachkov A.L., Korolev S.P, Kravchuk K.S., Sadogursky M.N., Seidman L.A. Published: 30.04.2020
Published in issue: #2(131)/2020  

DOI: 10.18698/0236-3941-2020-2-109-127

Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment of Mechanical and Physical Processing  
Keywords: magnetron deposition, aluminum oxide, nanosized layer, PET film, facility, mode of operation, technology, permeability, AFM-image

The paper introduces the development of the technology of reactive magnetron deposition of a nanosized aluminum oxide layer on a roll PET film, which provides a low specific permeability relative to oxygen. We describe a large-size magnetron deposition facility and its optimal operating modes, as well as the sequence of operations performed. Within the research, we found that various parameters of magnetron deposition of aluminum oxide affect the characteristics of the nanosized layer. The thicknesses of oxide layers were measured in the range of 20--80 nm, the roughness of their surfaces and their structures and reliefs were estimated. Furthermore, we established the experimental dependence of the specific permeability relative to the oxygen of the oxide layer on the PET substrate on its thickness in the range of 20--80 nm. The study gives its qualitative explanation and describes the specific energy consumption

The work was done in JSC "Innovation Industrial Complex "Besedy" with partial support of the Foundation for Assistance to Small Innovative Enterprises FASIE (State contract no. 10474р/19532, June 4, 2012)


[1] Vlasova G. Sovremennyy rynok polimernoy upakovki [Modern market of polymer package]. V: Aktualʼnyya pytannі mytnay spravy. [In: Actual technologies in customs]. Minsk, 2010, pp. 82--90.

[2] Hirvikorpi T., Laine R., Vaha-Nissiet V., et al. Barrier properties of plastic films coated with an Al2O3 layer by roll-to-toll atomic layer deposition. Thin Solid Films, 2014, vol. 220, pp. 164--169. DOI: https://doi.org/10.1016/j.tsf.2013.10.148

[3] Chang R.C., Hou H.T., Tsai F.T., et al. Atomic layer deposited Al2O3 barrier layers on flexible PET substrates. AMM, 2014, vol. 479-480, pp. 80--85. DOI: https://doi.org/10.4028/www.scientific.net/AMM.479-480.80

[4] Berlin E.V., Seydman L.A. Ionno-plazmennye protsessy v tonkoplenochnoy technologii [Ion-plasma processes in thin-film technology]. Moscow, Tekhnosfera Publ., 2010.

[5] Zhang H., Sang L., Wang Z., et al. Recent progress on non-thermal plasma technology for high barrier layer fabrication. Plasma Sc. Technol., 2018, vol. 20, no. 6, pp. 1--16. DOI: https://doi.org/10.1088/2058-6272/aaacc8

[6] Berlin E.V., Seydman L.A. Poluchenie tonkikh plenok reaktivnym magnetronnym raspyleniem [Obtaining of thin films by the reactive magnetron sputtering]. Moscow, Tekhnosfera Publ., 2014.

[7] Korolev S.P., Panchenko V.P., Sadogurskiy M.N., et al. Sposob reaktivnogo magnetronnogo naneseniya nanorazmernogo sloya oksida na podlozhku [Method for reactive magnetron sputtering of nano-sized oxide layer on a substrate]. Patent RF 2556433. Appl. 26.12.2013, publ. 10.07.2015 (in Russ.).

[8] Andritschky M. Origin of gas impurities in sputtering plasmas during thin film deposition. Vacuum, 1991, vol. 42, no. 12, pp. 753--756. DOI: https://doi.org/10.1016/0042-207X(91)90173-G

[9] Kagatsume A., Ueda S. Reduction of pumping time for a sputtering system by glow discharge cleaning. J. Vac. Sc. Technol. A, 1991, vol. 9, no. 4, pp. 2364--2368. DOI: https://doi.org/10.1116/1.577277

[10] Itoh A., Ishikawa Y., Kawabe T. Reduction of out gassing from stainless-steel surfaces by glow discharge. J. Vac. Sc. Technol. A, 1988, vol. 6, no. 4, pp. 2421--2425. DOI: https://doi.org/10.1116/1.575566

[11] Seydman L.A. [On non-monotonic resistance change of reactive discharge at changing of its regime]. Tr. nauch.-tekh. sem. Elektrovakuumnaya tekhnika i tekhnologiya. T. 4 [Proc. Sc.-Tech. Seminar "Electrovacuum equipment and technology". Vol. 4]. Moscow, BMSTU Publ., 2012, pp. 85--91 (in Russ.).

[12] Kuchin A.A., Obradovich K.A. Opticheskie pribory dlya izmereniya sherokhovatosti poverkhnosti [Optical devices for measuring variation in surface roughness]. Leningrad, Mashinostroenie Publ., 1981.

[13] Pribor dlya opredeleniya gazopronitsaemosti VAC-V1 [VAC-V1 device for measuring gas penetrability]. ru.labthnk.com: website. Available at: http://ru.labthink.com/product/vac-v1-gas-permeability-tester.html (accessed: 15.12.2018) (in Russ.).

[14] Hanlon J.F., Kelsey R.J., Forcinio H.E. Handbook of Package Engineering. CRC Press, 1998.