|

Optimizing Rational Modes in the Electrodischarge Machining of Parts Made of VT5 Titanium Alloy Based on Solving the Problem of Phase Material Conversion Boundary Displacement

Authors: Stavitskiy I.B., Naumov A.P. Published: 26.09.2023
Published in issue: #3(146)/2023  

DOI: 10.18698/0236-3941-2023-3-98-112

 
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment of Mechanical and Physical Processing  
Keywords: electrodischarge machining, pulse parameters, machinability, VT5 alloy, heat flux density, electrical pulse duration, simulation, Stefan problem

Abstract

The paper presents results of theoretical studies of the VT5 titanium alloy machinability by the electrodischarge machining method based on solving the thermal problem of the material phase transformation boundary displacement (Stefan problem). It proposes a method for determining parameters of electrical pulses for the VT5 alloy electrodischarge machining in order to increase the process productivity; recommendations are provided for that purpose. Density of the heat flux and its duration were determined necessary for implementation of the VT5 alloy electrodischarge machining process. Dependences were established of the minimum value of the heat flux pulse duration, when the VT5 alloy electrodischarge machining process was possible, and of maximum value of the heat flux pulse duration ensuring maximum removal of the VT5 alloy from the workpiece in one pulse, on the heat flux density. It is shown that for the maximum productivity of the VT5 alloy electrodischarge machining at the heat flux density used, it is necessary to assign effective duration of such a flux. Dependences of the heat flux effective duration on its density were established. Besides, to assign rational modes of VT5 ally electrodischarge machining, relationships were established and provided between the VT5 alloy machinability curves (dependences of the material penetration depth on the pulse duration) and other materials, including those for which rational modes are currently defined

Please cite this article in English as:

Stavitskiy I.D., Naumov A.P. Optimizing rational modes in the electrodischarge machining of parts made of VT5 titanium alloy based on solving the problem of phase material conversion boundary displacement. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2023, no. 3 (146), pp. 98--112 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2023-3-98-112

References

[1] Zolotykh B.N., Lyubchenko B.M. Inzhenernaya metodika rascheta tekhnologicheskikh parametrov EEO [Engineering methodology for calculating the technological parameters of EDM]. Moscow, Mashinostroenie Publ., 1981.

[2] Eliseev Yu.S., Saushkin B.P. Elektroerozionnaya obrabotka izdeliy aviatsionno-kosmicheskoy tekhniki [Electrical discharge machining of aerospace products]. Moscow, Bauman MSTU Publ., 2010.

[3] Nair S.S., Joshi N. Trends in wire electrical discharge machining (WEDM): a review. IJERA, 2014, vol. 4, no. 12-1, pp. 71--76.

[4] Chandramouli S., Shrinivas Balraj U., Eswaraiah K. Optimization of electrical discharge machining process parameters using Taguchi method. IJAME, 2014, vol. 4, no. 4, pp. 425--434.

[5] Zolotykh B.N. Osnovnye voprosy teorii elektricheskoy erozii v impulsnom razryade v zhidkoy dielektricheskoy srede. Dis. d-ra tekh. nauk [Basic questions of the theory of electrical erosion in a pulsed discharge in a liquid dielectric. Dr. Sc. (Eng.). Diss.]. Moscow, MIEM, 1968 (in Russ.).

[6] Khaldeev V.N., Makarov M.N. On a thermal effect of an electric impulse. Metalloobrabotka, 2016, no. 1, pp. 23--28 (in Russ.).

[7] Kreith F., Black W.Z. Basic heat transfer. New York, Harper & Row, 1980.

[8] Stavitskiy I.B. Determination of rational modes of electroerosive machining based on the solution of the thermal problem of moving the boundary of the phase transformation of the material. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2011, Spec. iss. "Power and Transport Machine Building", pp. 63--73 (in Russ.).

[9] Kalitkin N.N., Koryakin P.V. Chislennye metody. Kn. 2. Metody matematicheskoy fiziki [Numerical methods. P. 2. Methods of mathematical physics]. Moscow, Akademiya Publ., 2013.

[10] Okulov N.A. On a numerical method for solving one-dimensional Stefan-type problems. Vychislitelnye metody i programmirovanie [Numerical Methods and Programming], 2011, vol. 12, no. 2, pp. 238--246 (in Russ.).

[11] Gupta S.C. The classical Stefan problem. Amsterdam, Elsevier, 2003.

[12] Stavitskiy I.B., Shevchenko A.S. Definition of titanium EDM pulse parameters based on solution of the Stefan heat problem. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2017, no. 3 (in Russ.). DOI: http://dx.doi.org/10.18698/2308-6033-2017-3-1599

[13] Grigoryev I.S., Meylikhov E.Z., ed. Fizicheskie velichiny [Physical quantities]. Moscow, Energoatomizdat Publ., 1991.

[14] Zinovyev V.E. Teplofizicheskie svoystva metallov pri vysokikh temperaturakh [Thermophysical properties of metals at high temperatures]. Moscow, Metallurgiya Publ., 1989.

[15] Novitskiy L.A., Kozhevnikov I.G. Teplofizicheskie svoystva materialov pri nizkikh temperaturakh [Thermophysical properties of materials at low temperatures]. Moscow, Mashinostroenie Publ., 1975.

[16] Livshits B.G., Kraposhin V.S., Linetskiy Ya.L. Fizicheskie svoystva metallov i splavov [Physical properties of metals and alloys]. Moscow, Metallurgiya Publ., 1980.

[17] Shlyamnev A.P., Svistunova T.V., Lapshina O.B., et al. Korrozionnostoykie, zharostoykie i vysokoprochnye stali i splavy [Corrosion-resistant, heat-resistant and high-strength steels and alloys]. Moscow, Intermet Inzhiniring Publ., 2000.

[18] Drits M.E., ed. Svoystva elementov [Properties of elements]. Moscow, Metallurgiya Publ., 1985.

[19] Desai P.D. Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data, 1986, vol. 15, no. 3, pp. 967--983. DOI: https://doi.org/10.1063/1.555761

[20] Desai P.D. Thermodynamic properties of manganese and molybdenum. J. Phys. Chem. Ref. Data, 1987, vol. 16, no. 1, pp. 91--108. DOI: https://doi.org/10.1063/1.555794

[21] Thermophysical properties of materials for water cooled reactors. IAEA-TECDOC-949. Vienna, IAEA, 1997.

[22] Desai P.D. Thermodynamic properties of selected binary aluminium alloy systems. J. Phys. Chem. Ref. Data, 1987, vol. 16, no. 1, pp. 109--124. DOI: https://doi.org/10.1063/1.555788

[23] Sedov Yu.E., Adaskin A.M. Spravochnik molodogo termista [Handbook of young thermist]. Moscow, Vysshaya shkola Publ., 1986.

[24] The periodic table of the elements. webelements.com: website. Available at: http://www.webelements.com (accessed: 05.05.2023).

[25] AISI type 304 stainless steel. asm.matweb.com: website. Available at: http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MQ304A (accessed: 05.05.2023).

[26] Kharakteristika materiala VT5 [Characteristics of VT5 material]. splav-kharkov.com: website (in Russ.). Available at: http://www.splav-kharkov.com/mat_start.php?name_id=1285 (accessed: 05.05.2023).