|

Methodology and Experience in the Primary Designing a Transsonic Axial Compressor

Authors: Borovkov A.I., Galerkin Yu.B., Solovyeva О.А., Drozdov А.А., Rekstin A.F., Soldatova K.V., Sebelev A.A. Published: 13.09.2022
Published in issue: #3(142)/2022  

DOI: 10.18698/0236-3941-2022-3-129-150

 
Category: Power Engineering | Chapter: Vacuum, Compressor Technology, and Pneumatic Systems  
Keywords: axial compressor, impeller, guide vane, flow coefficient, radial balance, mixing loss

Abstract

The article considers the basic principles underlying the program for the calculation and designing gas turbine engine axial compressors. Calculation of pressure losses and deflection ability of the cascades is based on the formulas of A. Komarov. The model involves empirical coefficients, the values of which were selected during program verification based on the results of testing multistage compressors and compressor stages. The basic equations and the algorithm for calculating pressures and velocities are given under the condition of radial balance. The application of computer programs based on these models in designing a gas turbine engine four-stage compressor of moderate power with a total pressure ratio of 3.2 and a given speed is shown. For the first compressor stage, two options with different flow rates are compared. The first option was designed according to the classic recommendation to get close to the same mechanical energy of the gas at the exit of the stage along the radius. The second option was designed for a lower flow coefficient, but ensuring the radial balance, requires introducing a significant non-uniformity of mechanical energy supply along the radius. Due to the lower kinetic energy, the stage efficiency of the second variant is 1.9 % higher, despite the fact that the loss coefficients of the blade cascades are lower in the first variant. The question remains as to how much the inevitable mixing losses in the second variant will reduce its efficiency in the process of equalizing the mechanical energy of the gas

Please cite this article in English as:

Borovkov A.I., Galerkin Yu.B., Solovyeva O.A., et al. Methodology and experience in the primary designing a transsonic axial compressor. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2022, no. 3 (142), pp. 129--150 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2022-3-129-150

References

[1] Marenina L., Galerkin Yu., Soldatova К. Computational fluid dynamics application for analysis of centrifugal compressor stage stator part. Int. J. Mech. Eng. Robot. Res., 2018, vol. 7, no. 6, pp. 656--661. DOI: https://doi.org/10.18178/ijmerr.7.6.656-661

[2] Galerkin Yu., Drozdov A., Solovyeva O. Vaneless diffuser for low flow rate centrifugal compressor stage. Proc. 13th Europ. Conf. "Turbomachinery Fluid Dynamics & Thermo-dynamics", 2019, paper ETC2019-329.

[3] Galerkin Yu.B., Drozdov A.A., Solovyeva O.A. [Special working aspects of vaneless diffuser of centrifugal compressor stages of different meridional form]. Tr. 16 Mezhdunar. nauch.-tekh. konf. po kompressorostroeniyu. T. 1 [Proc. 16th Int. Sc.-Tech. Conf. on Compressor Manufacturing. Vol. 1]. St. Petersburg, 2014, pp. 171--178 (in Russ.).

[4] Borovkov A.I., Voinov I.B., Nikitin M.A., et al. Experience of performance modeling the single-stage pipeline centrifugal compressor. AIP Conf. Proc., 2019, vol. 2141, art. 030051. DOI: https://doi.org/10.1063/1.5122101

[5] Borovkov A.I., Voinov I.B., Galerkin Yu.B., et al. Experimental characteristic simulation for two-stage pipeline centrifugal compressor. IOP Conf. Ser.: Mater. Sc. Eng., 2019, vol. 604, art. 012052. DOI: https://doi.org/10.1088/1757-899X/604/1/012052

[6] Borovkov A., Voinov I., Galerkin Yu., et al. Issues of gas dynamic characteristics modeling: a study on a centrifugal compressor model stage. E3S Web Conf., 2019, vol. 140, art. 06003. DOI: https://doi.org/10.1051/e3sconf/201914006003

[7] Galerkin Yu.B., Rekstin A.F., Soldatova K.V., et al. Engineering method state of optimum gas-dynamic design and calculation of centrifugal pump characteristics. Part 1. Kompressornaya tekhnika i pnevmatika, 2019, no. 4, pp. 3--10 (in Russ.).

[8] Galerkin Yu.B., Rekstin A.F., Soldatova K.V., et al. [Development of LPI-SPbPU scientific school of turbocompressor design, results of cooperation with compressor manufacturers]. 17 Mezhdunar. nauch.-tekh. konf. [17 Int. Sc.-Tech. Conf.]. Kazan, 2017, pp. 19--29 (in Russ.).

[9] Rakov G.L., Rassokhin V.A., Zabelin N.A., et al. A low emission axial-flow turbine for the utilization of compressible natural gas energy in the gas transport system of Russia. IJESE, 2016, vol. 11, no. 18, pp. 11721--11733.

[10] Smirnov M.V., Sebelev A.A., Zabelin N.A., et al. Effects of hub endwall geometry and rotor leading edge shape on performance of supersonic axial impulse turbine. Part I. 12th Europ. Conf. "Turbomachinery Fluid Dynamics and Thermodynamics", 2017, paper ETC2017-100. DOI: https://doi.org/10.29008/ETC2017-100

[11] Sebelev A.A., Smirnov M.V., Borovkov A.I., et al. Effects of hub endwall geometry and rotor leading edge shape on performance of supersonic axial impulse turbine. Part II: method validation and final results. 13th Europ. Conf. "Turbomachinery Fluid Dynamics and Thermodynamics", 2019, paper ETC2019-165. DOI: https://doi.org/10.29008/ETC2019-165

[12] Zhang J., Zhou Z., Cao H., et al. Aerodynamic design of a multi-stage industrial axial compressor. Adv. Eng. Softw., 2018, vol. 116, pp. 9--22. DOI: https://doi.org/10.1016/j.advengsoft.2017.11.005

[13] Zhihui L., Yanming L. Optimization of rough transonic axial compressor. Aerosp. Sc. Technol., 2018, vol. 78, pp. 12--25. DOI: https://doi.org/10.1016/j.ast.2018.03.031

[14] Aftab M.S., Ali F., Aadil Khan M., et al. Design and analysis of a five stage axial flow compressor. 5th ICASE, 2017. DOI: https://doi.org/10.1109/ICASE.2017.8374248

[15] Marchukov E., Egorov I., Popov G., et al. Optimization of a three spool axial compressor to increase the efficiency of a gas turbine engine. IOP Conf. Ser.: Mater. Sc. Eng., 2019, vol. 604, no. 1, art. 012048. DOI: https://doi.org/10.1088/1757-899X/604/1/012048

[16] Komarov A.P. Issledovanie ploskikh kompressornykh reshetok [Study on flat compressor cascades]. V kn.: Lopatochnye mashiny i struynye apparaty. Vyp. 2 [In: Blade machines and jet devices. Iss. 2]. Moscow, Mashinostroenie Publ., 1967, pp. 67--110 (in Russ.).

[17] Popov Yu.A. Sovershenstvovanie i analiz protochnoy chasti osevykh kompressorov i stupeney s ispol’zovaniem rezul’tatov ispytaniya lopatochnykh reshetok. Dis. kand. tekh. nauk [Development and analysis of flowing parts of centrifugal compressors and stages using tests results of blade systems. Cand. Sc. (Eng.). Diss.]. St. Petersburg, SPbSPU, 2010.

[18] Lieblein S. Experimental flow in 2D cascades. In: Aerodynamic design of axial flow compressor. NASA, 1965, pp. 183--227.

[19] Bunimovich A.I., Svyatogorov A.A. Obobshchenie rezul’tatov issledovaniya ploskikh kompressornykh reshetok pri bol’shoy dozvukovoy skorosti [Generalization of the results of the study of flat compressor arrays at high subsonic speed]. V kn.: Lopatochnye mashiny i struynye apparaty. Vyp. 2 [In: Blade machines and jet devices. Iss. 2]. Moscow, Mashinostroenie., 1967, pp. 36--66 (in Russ.).

[20] Dovzhik S.A., Ginevskiy A.S. Pressure losses in blade rings of centrifugal subsonic compressor. Promyshlennaya aerodinamika, 1961, no. 20, pp. 33--40 (in Russ.).

[21] Podobuev Yu.S., Seleznev K.P. Teoriya i raschet osevykh i tsentrobezhnykh kompressorov [Theory and calculation of axial and centrifugal compressors]. Moscow, Leningrad, MASHGIZ Publ., 1957.

[22] Goflin A.P. Aerodinamicheskiy raschet protochnoy chasti osevykh kompressorov dlya statsionarnykh ustanovok [Aerodynamics calculation of centrifugal compressor flow part for stationary plants]. Moscow, Leningrad, MASHGIZ Publ., 1959.

[23] Kholshchevnikov K.V., Emen O.V., Mitrokhin V.T. Teoriya i raschet aviatsionnykh lopatochnykh mashin [Theory and calculation of aviation blade machines]. Moscow, Mashinostroenie Publ., 1986.

[24] Galеrkin Yu., Popov Yu. Optimal primary design of industrial axial compressor flow path. International Conference on Compressors and their Systems. London, City University, 2009, pp. 319--329.

[25] Galerkin Yu.B., Popov Yu.A. Analysis of spatial flow in non-homogenous axial compressor stages. Kompressornaya tekhnika i pnevmatika, 2006, no. 4, pp. 11--19 (in Russ.).

[26] Galerkin Yu.B., Popov Yu.A. Efficiency analysis of spatial blade systems of axial compressors using blowout data for flat cascades. Kompressornaya tekhnika i pnevmatika, 2005, no. 3, pp. 33--38 (in Russ.).

[27] Galerkin Yu.B., Popov Yu.A. Design analysis of axial compressor stages characteristics. Kompressornaya tekhnika i pnevmatika, 2005, no. 5, pp. 26--33 (in Russ.).

[28] Galerkin Yu.B., Popov Yu.A., Prokof’yev A.Yu. Efficiency analysis of elementary cascades of axial blades using blowout data for flat cascades. Kompressornaya tekhnika i pnevmatika, 2005, no. 1, pp. 13--19 (in Russ.).

[29] Galerkin Yu.B., Popov Yu.A. Optimization of axial compressor setting at option calculation. Part 1. Kompressornaya tekhnika i pnevmatika, 2009, no. 5, pp. 2--10 (in Russ.).

[30] Galerkin Yu.B., Popov Yu.A. Optimization of axial compressor setting at option calculation. Part 2. Kompressornaya tekhnika i pnevmatika, 2009, no. 6, pp. 11--20 (in Russ.).