|

Development of an Experimental Setup to Study the Load-Carrying Capacity of a Single-Stage Magnetic Rotor Suspension

Authors: Badykov R.R., Lomachev A.O., Benedyuk M.A., Grigoriev E.M. Published: 10.12.2022
Published in issue: #4(143)/2022  

DOI: 10.18698/0236-3941-2022-4-4-18

 
Category: Aviation and Rocket-Space Engineering | Chapter: Innovation Technologies of Aerospace Engineering  
Keywords: magnetic rotor suspension, axial magnet, PID-controller, hybrid magnetic bearing, electronic control system

Abstract

An installation for studying the dynamics and carrying capacity of a single-stage magnetic rotor suspension has been created. The evaluation of the proposed installation with regard to its potential use was carried out. The possibility of creating a rotor suspension based on hybrid active magnetic bearings was investigated with the help of the setup. If hybrid active magnetic bearings are used, the magnetic rotor suspension will allow to replace the existing classical active magnetic bearings used in vacuum, cryogenic and pumping equipment, reducing the energy costs without changing the geometric parameters of the existing units' housings. Experimental research of characteristics of axial active electromagnet is conducted (minimum power required to keep the rotor in vertical position is obtained). A finite-element model of the axial active magnetic bearing is created. The calculation results of the model are compared with the experimental data and the inductive transducer is calibrated. Experimental installation of a single-step rotor magnetic suspension is designed and manufactured. An electrical circuit for controlling the experimental setup is assembled. The program for PID-controller is given and its principle of operation is described with respect to the specified installation

Please cite this article in English as:

Badykov R.R., Lomachev A.O., Benedyuk M.A., et al. Development of an experimental setup to study the load-carrying capacity of a single-stage magnetic rotor suspension. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2022, no. 4 (143), pp. 4--18 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2022-4-4-18

References

[1] Kazakov L.A. Elektromagnitnye ustroystva REA [Electromagnetic devices of RAA]. Moscow, Radio i svyaz Publ., 1991.

[2] Solnyshkin N.I. Teoreticheskie osnovy elektrotekhniki. Modelirovanie elektromagnitnykh poley [Theoretical fundamentals of electrical engineering. Simulation of electromagnetic fields]. Pskov, Pskov SU Publ., 2013.

[3] Zhuravlev Yu.N. Aktivnye magnitnye podshipniki. Teoriya, raschet, primenenie [Active magnetic bearings. Theory, calculation, application]. St. Petersburg, Politekhnika Publ., 2003.

[4] Maslen E., Allaire P., Noh M., et al. Magnetic bearing design for reduced power consumption. J. Tribol., 1996, vol. 118, no. 4, pp. 839--846. DOI: https://doi.org/10.1115/1.2831617

[5] Rodin I.Yu., Arslanova D.N., Amoskov V.M., et al. [Technology of combined magnetology suspension for high-speed traffic]. Tr. XVII Mezhdunar. konf. "Elektromekhanika, elektrotekhnologii, elektrotekhnicheskie materialy i komponenty" [Proc. XVII Int. Conf. Electromechanics, Electrotechnologies, Electromechanic Materials and Components]. Alushta, Znak Publ., 2018, pp. 229--231 (in Russ.).

[6] Firsov A.A., Amoskov V.M., Arslanova D.N., et al. [Combined electromagnetic suspension with reduced energy consumption for magnetogenic transport systems]. Aktualnye problemy elektromekhaniki i elektrotekhnologiy APEET-2017 [Topical Problems of Electromechanics and Electrical Technologies APEET-2017]. Ekaterinburg, UrFU Publ., 2017, pp. 85--89 (in Russ.).

[7] Zad H.S., Khan T.I., Lazoglu I. Design and adaptive sliding mode control of hybrid magnetic bearings. IEEE Trans. Ind. Electron., 2017, vol. 65, no. 3, pp. 2537--2547. DOI: https://doi.org/10.1109/TIE.2017.2739682

[8] Vereshchagin V.P., Rogoza A.V. Design and adaptive sliding mode control of hybrid magnetic bearings. Voprosy elektromekhaniki. Trudy VNIIEM [Electromechanical Matters. VNIIEM Studies], 2013, vol. 136, no. 5, pp. 3--8 (in Russ.).

[9] Zhang W., Zhu H. Radial magnetic bearings: an overview. Results Phys., 2017, vol. 7, pp. 3756--3766. DOI: https://doi.org/10.1016/j.rinp.2017.08.043

[10] Makridenko L.A., Sarychev A.P., Abduragimov A.S., et al. VNIIEM methods for electromagnetic bearing design. Voprosy elektromekhaniki. Trudy VNIIEM [Electromechanical Matters. VNIIEM Studies], 2016, vol. 152, no. 3, pp. 3--14 (in Russ.).

[11] Yu J., Zhu C.S. A sensor-fault tolerant control method of active magnetic bearing in flywheel energy storage system. IEEE VPPC, 2016. DOI: https://doi.org/10.1109/VPPC.2016.7791595

[12] Spece H., Fittro R., Knospe C. Optimization of axial magnetic bearing actuators for dynamic performance. Actuators, 2018, vol. 7, no. 4, art. 66. DOI: https://doi.org/10.3390/act7040066

[13] Izosimova T.A., Evdokimov Yu.K. [Method of designing an active magnetic suspension in a rotary machine with an automatic control system]. Informatsionnye tekhnologii v elektrotekhnike i elektroenergetike Mater. XI Vseros. nauch.-tekh. konf. [Information Technologies in Electrical Engineering and Power Engineering. Proc. XI Russ. Sc.-Tech. Conf.]. Cheboksary, Cheboksary SU Publ., 2018, pp. 98--101 (in Russ.).

[14] Whitlow Z.W., Fittro R.L., Knospe C.R. Dynamic performance of segmented active magnetic thrust bearings. IEEE Trans. Magn., 2016, vol. 52, no. 11, art. 8300711. DOI: https://doi.org/10.1109/TMAG.2016.2587700

[15] Amoskov V.M., Andreev E.N., Belyakov V.A., et al. Dynamic measurements of train-to-track air gap for levitated transport. Transportnye sistemy i tekhnologii [Transportation Systems and Technology], 2016, vol. 2, no. 2, pp. 39--42 (in Russ.). DOI: https://doi.org/10.17816/transsyst20162239-42

[16] Rossi M., Dezza F.C., Mauri M., et al. Rotor position estimation in a large air gap active magnetic bearing. Proc. 11th IEEE CPE-POWERENG, 2017, pp. 258--263. DOI: https://doi.org/10.1109/CPE.2017.7915179