Previous Page  11 / 12 Next Page
Information
Show Menu
Previous Page 11 / 12 Next Page
Page Background

С.А. Воронов, Вэйдун Ма

62

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2017. № 5

REFERENCES

[1] Malkin S., Guo C. Grinding Technology: Тheory and applications of machining with

abrasives. New York, Industrial Press, 2008. 372 р.

[2] Voronov S.A., Kiselev I.A., Ma V., Shirshov A.A. Numerical simulation of a grinding process

model for the spatial work-pieces: development of modeling techniques.

Nauka i obrazovanie:

nauchnoe izdanie MGTU im. N.E. Baumana

[Science and Education: Scientific Publication of

BMSTU], 2015, no. 5, pp. 40–57 (in Russ.). DOI: 10.7463/0515.0766577

Available at:

http://technomag.edu.ru/jour/article/view/283

[3] Astakhov V.P., Shvets S. The assessment of plastic deformation in metal cutting.

Journal of

Materials Processing Technology

, 2004, vol. 146, pp. 193–202.

DOI: 10.1016/j.jmatprotec.2003.10.015

Available at:

http://www.sciencedirect.com/science/article/pii/S0924013603009981

[4] Zhang Y., Outeiro J.C., Mabrouki T. On the selection of Johnson–Cook constitutive model

parameters for Ti–6Al–4V using three types of numerical models of orthogonal cutting.

Procedia

CIRP

, 2015, vol. 31, pp. 112–117. DOI: 10.1016/j.procir.2015.03.052

Available at:

http://www.sciencedirect.com/science/article/pii/S2212827115002504

[5] Wang S., Li C.H. Application and development of high-efficiency abrasive process //

Interna-

tional Journal of Advanced Science and Technology

, 2012, vol. 47, pp. 51–64.

DOI: 10.4028

/www.scientific.net/AMR.189-193.3113

Available at:

https://www.scientific.net/AMR.189-193.3113

[6] Li X

.

Modeling and simulation of grinding processes based on a virtual wheel model and

microscopic interaction analysis: PhD Тhesis. Worcester, U.S., 2010. Pp. 4–12.

[7] Voronov S.A., Ma W. Simulation of chip-formation by a single grain of pyramid shape.

Vibroengineering Procedia

, 2016, vol. 8, pp. 39–44.

[8] Kilicaslan C. Modelling and simulation of metal cutting by finite element method: MS Thesis.

İzmir, 2009. Pp. 22–23.

[9] Fang N. Tool-chip friction in machining with a large negative rake angle tool.

Wear

, 2005,

vol. 258, no. 5-6, pp. 890–897. DOI: 0.1016/j.wear.2004.09.047

Available at:

http://www.sciencedirect.com/science/article/pii/S0043164804003333

[10] Ohbuchi Y., Obikawa T. Finite element modeling of chip formation in the domain of nega-

tive rake angle cutting.

J. Eng. Mater. Tech

., 2003, vol. 125, no. 3, pp. 324–332.

DOI: 10.1115/1.1590999

Available at:

http://materialstechnology.asmedigitalcolletion.asme.org/

article.aspx?articleid=1427019

[11] Zherebtsov S., Salishchev G., Galeyev R. Mechanical properties of Ti–6Al–4V titanium alloy

with submicrocrystalline structure produced by severe plastic deformation.

Materials Transac-

tions

, 2005, vol. 46, no. 9, pp. 2020–2025. DOI: 10.2320/matertrans.46.2020

Available at:

https://www.jstage.jst.go.jp/article/matertrans/46/9/46_9_2020/_article

Voronov S.A.

— Dr. Sc. (Eng.), Professor, Applied Mathematics Department, Bauman

Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian

Federation).